Prime Computer, Inc.
Reference Guide
FDR3057-101B

FORTRAN
Revision 17

The FORTRAN Reference Guide

FORTRAN

Reference Guide

by Anthony R. Lewis

with Update Pages for Rev. 19. July 1982

by Carol A. Pryor

COPYRIGHT INFORMATION

The information in this document is subject 1o change without notice and should not be
construed as a commitment by Prime Computer Corporation. Prime Computer Corpora-
tion assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

Copyright © 1982 by
Prime Computer, Incorporated
500 Old Connecticut Path
Iramingham, Massachusetts 01701

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.

PRIMENET, RINGNET, and THE PROGRAMMER'S COMPANION are trademarks of Prime
Computer, Inc.

PRINTING HISTORY — FORTRAN Reference Guide

Edition Date Number Documents Rev.
*First Edition November 1977 PDR3057 14
*Update]Uly 1978 PTU2600-047 15
*Second Edition January 1979 IFDR3057 16.3

Third Edition March 1980 IFDR3057 17.2
Update Package 1 May 1981 COR3057-001 18.1
Update Package 2 July 1982 COR3057-002 19.0

*These editions are out of print.

HOW TO ORDER TECHNICAL DOCUMENTS

U.S. Customers Prime Employees
Software Distribution Communications Services
Prime Computer, Inc. MS 15-13, Prime Park
1 New York Ave. Natick, MA 01760
Framingham, MA 01701 (617) 655-8000, x4837
(617) 879-2960 x2053, 2054

Customers Qutside U.S. INFORMATION Systems
Contact your local Prime Contact your Prime

subsidiary or distributor. INFORMATION system dealer.

CONTENTS

PART I — OVERVIEW

OVERVIEW OF PRIME’S FORTRAN

Introduction 1-1
FORTRAN Under PRIMOS 1-2
System Resources Supporting FORTRAN 1-5

PART II — LANGUAGE-SPECIFIC SYSTEM INFORMATION

COMPILING

Introduction 2-1

Using the Compiler 2-1

End of Compilation Message 2-1

Compile Error Messages 2-2

Prime FORTRAN Compiler Parameters 2-2

DEBUGGING

Introduction 3-1

Source Level Debugger 3-1
Coding Strategy 3-1
Compiler Usage 3-2

OPTIMIZATION AND OTHER HELPFUL HINTS

Introduction 4-1

DO Loops 4-1

Statement Numbers 4-2
Multi-Dimensioned Arrays 4-3

Load Sequence and Memory Allocation 4-3
Function Calls 4-4

V-Mode vs. R-Mode Compilation 4-4
64V-Mode Common 4-4

[F Stalements 4-4

[nput/Qutpul 4-4

Statement Sequence 4-5

Parameter Statements 4-5

Inefficient Library Calls 4-5

Statemenl Functions and Subroutines 4-5
Integer Divides 4-6

Logical vs. Arithmelic IF 4-6

Use of the Compiler's-DYNM Option 4-6
Conclusion 4-7

Request for Contributions to this Section 4-7

PART IIIl — LANGUAGE REFERENCE

5 FORTRAN LANGUAGE ELEMENTS

Legal Character Set 5-1
Line Format 5-1

Operands 5-2

Generalized Subscripts 5-5
Operators 5-6

Program Composition 5-7

6 FORTRAN STATEMENTS

Implemented Statements 6-1

Header Statements for Subprograms 6-3
Specification Statements 6-4

Storage Statements 6-5

External Procedure Statements 6-9
Compilation and Run-Time Control Statements 6-9
Assignmenl Stalements 6-10

Control Stalements 6-11

Input/Output (I/O) Statements 6-14
Coding Statements 6-19

Format Statements 6-20

Device Control Statements 6-26
Function Calls 6-26

Subroutine Calls 6-27

7 FORTRAN FUNCTION AND SUBROUTINE STRUCTURE

Functions 7-1
Subroutines 7-2

=)

FORTRAN FUNCTION REFERENCE
FORTRAN Function Library 8-1

APPENDICES
COMPILER ERROR MESSAGES
SYSTEM DEFAULTS AND CONSTANTS

ASCII CHARACTER SET

PRIME Usage (-1
Keyboard Unit C-1

- O = 2

PRIME MEMORY FORMATS OF FORTRAN DATA TYPES

Introduction D-1
Data Types D-2

OVERVIEW

i,

Overview of

Prime’'s FORTRAN

18

INTRODUCTION

This document contains the information specific to Prime's FORTRAN IV language and its
compiler (FTN). General program development information: getting on the system, entering
programs, loading, and execution are treated in the Prime User’s Guide. We assume that you
have read the Prime User's Guide and are familiar with the FORTRAN language, but not neces-
sarily with its implementation on a Prime computer. Users unfamiliar with the language should
read one of the commercially available instruction books; two examples are:

McCracken, Daniel D., A Guide to FORTRAN IV Programming,
John Wiley and Sons, Inc.

Organick, Elliott I., A FORTRAN IV Primer, Addison-Wesley
Publishing Company

The current definitive standard for the FORTRAN IV language is the American National
Standards Institute publication X3.9-1966 (USA Standard FORTRAN).

This version

This book documents Prime's FORTRAN IV and its compiler (FTN) at software revision level
17 (Rev. 17). Together with our new book, the Prime User’s Guide, it replaces the FORTRAN
Programmer’'s Guide, FDR3057. The language-specific material in the Programmer’'s Guide has
been restructured in this language reference guide, while language-independent material (on
PRIMOS utilities and commands) has been expanded and placed in the Prime User's Guide.
(Details on the use of subroutines remain in the Subroutine Reference Guide).

This restructuring represents another stage in the continuing evolution of Prime's documents.
First, it reflects the growing number of Prime's compiled languages (FORTRAN IV, FORTRAN
77, COBOL, PL/I subset G, PASCAL and RPG I, as of Rev. 18). Second, it points up the compati-
bility, at object code level, of program modules written in these languages. For example, a FOR-
TRAN subroutine can be called from an RPG program module, or a PL/I subset G subroutine
from a COBOL program. Third, it recognizes that program development is basically identical in
all high-level languages (with a few exceptions, such as loading libraries). Thus, applications
programmers can use the Prime User’s Guide as their tutorial for PRIMOS, and the language
reference guides, such as this book, as reference works.

Organization
The guide is composed of three parts:

Part 1. An introductory section including an overview of FORTRAN as it is
implemented on the Prime computer. This includes Prime extensions
to the language, supporting utilities, systems, and software, plus
where to find this information (Section 1).

Part II. Language-specific system information. This part of the book
includes complete details on the use of the FORTRAN IV compiler,
FTN (Section 2). Suggestions to the programmer for debugging (Sec-

1 May 1961 1-1 FDR3057

1 OVERVIEW OF PRIME'S FORTRAN

tion 3) and optimization [Section 4) are presented along with the
locations of additional information.

Part III. FORTRAN language reference. Sections 5-8 form a reference for
the FORTRAN language as implemented on Prime computers. The
Prime extensions to the standard language are given along with
examples of their usage.

Appendices A complete list of compiler error messages and their meanings
(Appendix A); system defaults and constants (Appendix B); ASCII
character set (Appendix C); and FORTRAN data type storage
(Appendix D).

Related documents

The following documents contain detailed reference information on the PRIMOS system and
utilities.

Operating System Reference

Prime User's Guide
PRIMOS Commands Reference Guide
PRIMOS Subroutines Reference Guide

Software Subsystem Reference

The FORTRAN Programmer's Companion

The New User's Guide to EDITOR and RUNOFF
LOAD and SEG Reference Guide

Source Level Debugger Guide

MIDAS User's Guide

Reference Guide for DBMS Schema DDL
FORTRAN Reference Guide for DBMS

FORMS Programmer's Guide

FORTRAN UNDER PRIMOS
Program conversion

There are a number of factors which must be taken into account when converting FORTRAN
programs from one compulersyslem lo another. These are the language statements, extensions,
inpul/output, functions, subroutines, and control flow. Any particular program may have
special conversion needs, but these are the major areas to consider.

Language: Make certain that all statements perform the same operations on both systems, The
major sources of possible incompatibility are device and input/output statements. The 1966
standard FORTRAN does not fully describe certain stalements such as ENDFILE or REWIND;
consequently, their exact performance is installation-dependent. Prime’s FORTRAN supports
both the ANSI and IBM formals for direct access READ and WRITE slatements. Levels of
nesting in DO loops and IF statements will present no problems as there is no synlactical limit
on such nesting in Prime FORTRAN. Similarly, there is no syntactical limit to the number of
slatement labels in computed GO TO slalements.

Exiensions: Extensions to standard FORTRAN which the user should inspect are:

¢ Use of the SINSERT command for file insertion at compilation
o B Formal

¢« TRACE instruction for debugging

o List-direcled input/outpul

o Direct file access READ/WRITE statements

» Long integers

FDR3057 1-2 1 May 1981

_—

OVERVIEW OF PRIME'S FORTRAN 1

FORTRAN
SOURCE
PROGRAM

FTN LISTINGS AND
FORTRAN === CONCORDANCES

COMPILER
R — IDENTITY COMPILER COMPILER V — IDENTITY
OPTION OPTION
32R OR 64R 64V OBJECT
FILE
y
LOAD SEG
LOADER LOADER
MSEAN\!/;F?Y SEGMENTED
RUNFILE
IMAGE FILE
EXECUTE ON EXECUTE ON
P300 AND UP P350 AND UP

Figure 1-1. Sequence of FORTRAN Program Development

LE - e — il

1 March 1980 1-3 FDR3057

1 OVERVIEW OF PRIME'S FORTRAN

Parameters

e IMPLICIT specilication
o Subprogram structure

e Generalized subscripling

Input/Output: FORTRAN logical unit numbers must agree with those given in Section 6 ol this
document {(or such others as are established by the system administrator]). PRIMOS is aninler-
aclive multi-user system, all users have access lo disk [iles. Use of peripheral storage devices is
obtained by assigning the device to the user after which lile operations may be performed.

Functions: Prime supplies a large number of the normal mathemalical funclions plus a sel of
Boolean (logical) functions. These are listed in Secltion 8. T'he user should check these to be sure
all functions in the original source program are implemented under PRIMOS. It is unlikely thal
the average programmer will be using functions not on this list. User-delined functions should
be wrillen as specilied in Section 7.

Subroutines: Inasmuch as all operaling syslem or [ile system calls are inslallation-dependent,
all such calls must be replaced by their PRIMOS equivalents. All subroulines will be found in
Reference Guide, PRIMOS Subroutines. User-defined subroutines should be wrillen to the

specilicalions in Section 7.
Control flow: To insure an orderly return from the main program o the PRIMOS level, the last
logical statement of a main program must be

CALL EXIT
This is analogous to the RETURN stalement, which is the last logical statement ol a funclion
subprogram or subrouline.
Proorams excculing in Lhe R-identily may be
cribed in Subroulines Relerence Guide,

‘chained” by use of the RESU$$ subrouline des-

Program environment
Under PRIMOS, FORTRAN programs may execute in one of three environments:

s Interaclive
¢ Phantom user
e Balch

Interactive: Program execution is initiated directly by the user. The terminal is dedicated to the
program during execution. The program will accept input from the terminal and will print at the
terminal any output specified by the program as well as user- or system-generated error
messages. This environment is the one most often used. Major uses are:

o Program development and debugging.

¢ Programs requiring short execulion time.

s Data eniry programs such as order entry, payroll, etc.
o Interactive programs such as the Editor, etc.

Phantom user: The phantom environment allows programs to be executed while “disconnected”
from a terminal. Phantom users accept input from a command [ile instead of a terminal; output
directed to a terminal is either ignored or directed to a file.

Major uses of phanloms are:
¢ Programs requiring long execution time (such as sorts].
e Certain system ulilities (such as line printer spooler).
e Freeing terminals for interactive uses.

Batch jobs: Since the number of phantom users on a system is limited, phantoms are not always
available. The Batch environment allows users to submit non-interactive command files as
Batch jobs at any time. The Batch monitor (itself a phantom) queues these jobs and runs them,

FDR3O57 1-4 1 March 1980

OVERVIEW OF PRIME'S FORTRAN

one to six at a time, as phantoms become free. (See the Prime User's Guide for details).

File system summary

PRIMOS allows the user to access up to 128 files at one time. These disk files may be created,
modified and deleted through the use of the Applications Library subroutines and the file
management subroutines of the Operating System. Fileunits 1-16 opened by these subroutines,
may be accessed by FORTRAN I/0 statements such as READ, WRITE, ENCODE, DECODE.
See Section 6 [or a complete discussion of these commands.

o
o

e e B s
YSTEM RESO

There are a large number of libraries and utilities in PRIMOS supporting the use of FORTRAN
on the Prime computer. A briel description of some of the major ones follows.

Table 1-1. FORTRAN Mathematical Functions
Data Mode of Argument and Value
Single- Double-
Operalion Integer Precision Precision Complex
Sine n/a SIN DSIN CSIN
Cosine n/a CcOS DCOS CCOs
Arctangent n/a ATAN DATAN
Arctangenl of ratio n/a ATANZ DATAN2
Hyperbolic tangent n/a TANH
Log-base e (Ln) n/a ALOG DLOG CLOG
Log-base 2 n/a DLOG2
Log-base 10 n/a ALOG10 DLOG10
Exponential n/a EXP DEXP CEXP
Square root n/a SQRT DSQRT CSQRT
Absolute value IABS ABS DABS CABS
Remainder (modulus) MOD AMOD DMOD n/’a
Truncation to n/a AINT DINT n/a
Integral value
Positive difference IDIM DIM n/a
Magnitude of first ISIGN SIGN DSIGN n/a
no. limes sign
of second
Complex conjugate n/a n/u n/a CON]JG
Maximum of List AMAX0(1) AMAX1 DMAX1 n’a
MAXO0 MAX1 (1) n/a
Minimum of List AMINO(1) AMINI1 DMIN1 n/a
MINO MIN1(2) n/a
Notes
n/a — Nol applicable.
1 — Value mode is single-precision.

2 — Value mode in integer.

1 March 1980

FDDR3057

1 OVERVIEW OF PRIME'S FORTRAN

Libraries

A complete treatment of all library and system subroutines is in Reference Guide, PRIMOS
Subroutines. A summary of the FORTRAN mathematical functions is given in Table 1-1. There
are also FORTRAN functions for the Boolean (logical) operations of AND, OR, XOR, NOT,
right shift, right truncate, left shift, and left truncate. Conversion between data modes is
supported by a sel of conversion functions. For more advanced mathematical usage, a matrix
library is provided (See Table 1-2 for a summary).

Table 1-2. Matrix Operations Subroutines

Data Mode of Matrix Elements
Single- Double-
' Operation Integer Precision Complex Precision

Setting matrix to identity matrix* IMIDN MIDN CMIDN DMIDN
Setting matrix to constant matrix IMCON MCON CMCON DMCON
Multiplying matrix by a scalar IMSCL MSCL CMSCL DMSCL

Addition of matrices IMADD MADD CMADD DMADD
Subtraction of matrices IMSUB MSUB CMSUB DMSUB
Matrix Multiplication IMMLT MMLT CMMLT DMMLT
Calculating transpose matrix* IMTRN MTRN CMTRN DMTRN
Calculating adjoint matrix* IMAD] MAD] CMAD] DMAD]
Calculating inverted matrix* n/a MINV CMINV DMINV
Calculating signed cofactor* IMCOF MCOF CMCOF DMCOF
Calculating determinant* IMDET MDET CMDET DMDET
Solve a system of linear n/a LINEQ CLINEQ DLINEQ
equations
Generate permutations PERM
Generate combinations COMB
Notes

n/a — Not applicable

* — For square matrices only

Compiler

Prime's FORTRAN IV compiler operates on FORTRAN source code to generate highly opti-
mized object code. The user has the option, at compilation time, of generating object code for
execution in either the R-identily or V-identity. Additional options control I/0 specifications,
listings, concordances, memory usage, and other useful operations. The compiler is described
in Section 2.

Loader

The R-identity loader combines into an executable program, program modules, subroutines,
and libraries that have been compiled separately. It handles symbol cross references and
module linkages. Maps of the load are available at the terminal or written into files. The loader
is described in the Prime User's Guide.

SEG utility

SEG is the V-identity program loading and execution utility. It combines separately compiled
program modules, subroutines, and libraries into an executable program. (see the Prime User’s
Guide). Program modules can be up to 64K words long. All memory management, symbol

FDR3057 1-6 1 March 1980

LN

i,

OVERVIEW OF PRIME'S FORTRAN 1

18

tables, linkages, etc., are handled by SEG’s loader. Various types of loadmaps may be obtained.
The SEG utility has many functions, including loading shared procedures. These are described
in LOAD and SEG Reference Guide.

Editor

Prime's text editor is a line-oriented editor enabling the programmer to enter and modify source
code and text files. Information for these purposes is in the Prime User’s Guide; a complete
description of the Editor is in The New User's Guide to EDITOR and RUNQOFF.

Multiple index direct access system (MIDAS)

MIDAS is a system of interactive utilities and high-level subroutines enabling the use of index-
sequential and direct-access data files at the application level. Handling of indices, keys,
pointers, and the rest of the file infra-structure is performed automatically for the user by
MIDAS. Major advantages of MIDAS are:

* Large data files may be constructed.

¢ Efficient search techniques.

¢ Rapid data access.

° Compatibility with existing Prime file structures.

® Ease of building files.

* Primary key and up to 19 secondary keys possible.
¢ Multiple user access to files.

¢ Data entry lockout protection.

* Partial/full file deletion utility (KIDDEL).

Complete documentation is MIDAS User's Guide.

Database Management system (DBMS)

The FORTRAN interface to the DBMS includes two major processors and Lheir respective lang-
uages: the FORTRAN Subschema Data Definition Language (DDL) Compiler and the
FORTRAN DATA Manipulation Language (DML) Preprocessor.

The application programmer’s ‘view' of a schema is written in the FORTRAN Subschema DDL.
The Subschema Compiler translates the DDL into an internal, tabular form called the
subschema table which is used by the DML Preprocessor.

Commands for locating, retrieving, deleting, and modifying the contents of a database are
written in the FORTRAN DML. These commands are interspersed with FORTRAN statements
in the application source program and translated into FORTRAN declarations and statements
by the FORTRAN DML Preprocessor. The output of the preprocessor is the source input for the
FORTRAN compiler.

See: Reference Guide For DBMS Schema Data Definition Language (DDL), and the FORTRAN
Reference Guide For DBMS.

Forms management system (FORMS)

The Prime Forms Management System Mangement System [FORMS) provides a convenient
and natural method of defining a form in a language specifically designed for such a purpose.
These forms may then be implemented by any applications program which uses Prime’s Input-
Output Control System (IOCS), including programs written in FORTRAN. Applications
programs communicate with the FORMS through input/output statements native to the host
language. Programs that currently run in an interactive mode can easily be converted to use
FORMS.

FORMS allows cataloging and maintenance of form definitions available within the computer
system. To facilitate use within an applications program, all form definitions reside within a

1 May 1981 1-7 FDR3057

OVERVIEW OF PRIME’'S FORTRAN

centralized directory in the system. This directory, under control of the system administrator,
may be easily changed, allowing the addition, modilicalion, or deletion of form definilions.

FORMS is device independent. If certain basic crileria are met, any mix of terminals attached to
the Prime computer may be used with the FORMS system. Terminal configuration is governed
by a control file in the centralized forms directory. This file is read by FORMS at run-time to
determine which device driver lo use, depending on the user lerminal type. This means that
multiple terminal types may be driven by the same applications program without change.
Certain terminal types are supporled by FORMS as released by Prime. Should the user have
another terminal capable of supporting FORMS, all that need be done is to write a low-level

device driver for the terminal and incorporate it into the FORMS run-time library. Details are in
FORMS Programmer’s Guide.

Language interfaces

Under the PRIMOS operating system, FORTRAN programs may call or be called by PMA
(Prime Macro Assembly) language programs. FORTRAN subroutines may be called from PL/I
subset G programs; PL/I subset G subroutines may be called from FORTRAN programs; and
FORTRAN subroutines may be called from COBOL programs. Details are in the PMA Program-
mer’'s Guide, The COBOL Reference Guide and the PL/I subset G Reference Guide.

FDR3057 1-8 1 May 1981

LANGUAGE-

- SPECIFIC

SYSTEM

- INFORMATION

Compiling

18

18

18|

18|

INTRODUCTION

Prime’s FORTRAN Compiler, a one-pass compiler, produces highly-optimized code and is
supported by extensive function and subroutine libraries to do file-handling, and both mathe-
matical and logical operations.

Source programs must meet the requirements of Prime FORTRAN as specified in this manual.

The compiler generates object code for either the R-identity or V-identity, R-identity code is
loaded with Prime's Linking Loader (LOAD), V-identity code is loaded with Prime's
segmented-addressing utility (SEG). These loaders are described in the Prime User’s Guide and
in the LOAD and SEG Reference Guide. Segmented-addressing code can be executed on Prime
50 Series computers. In the V-identity, special code can be generated for use by the source level
debugger (DBG) described in the Source Level Debugger Guide.

USING THE COMPILER
The FORTRAN Compiler is invoked by the FTN command to PRIMOS:
FTN pathname [-options]

pathname The pathname of the FORTRAN source program file.
options The mnemonics for the options controlling compiler functions such
as 1/0 device specification, listings, and others.

All mnemonic options must be preceded by a dash "-". The name of the source program file
must be specified as the first expression following FTN. For example,
OK, FIN TEST1 —XREFL -64V -LISTING SPOCL

The meanings of the options will be discussed later in this section.

END OF COMPILATION MESSAGE

After the compiler has completed a pass of the specified input file, and generated object code
and listing output to the devices specified by the option list, it prints one End of Compilation
message at the user’s terminal after each END statement encountered.

The format of the compiler message is:

xxxx ERRORS [<yyyyyy>FTN-REVzz.z] w WARNINGS

XKXXX The number of compilation errors; 0000 indicates a successful
compilation.
Vyyyvy Program module identification:

.MAIN. for a main program,

.DATA. for a BLOCK DATA subprogram,

the program entry name (up to 6 characters) for a subroutine or
function,

1 May 1981 2-1 FDR3057

Z COMPILING

ZZ.Z The PRIMQOS revision number.

w The number of warnings. If only 1 warning, the final S is not printed.

w WARNINGS does not appear if there are no warning messages.

Example:
0000 ERRORS [<.MAIN.>FIN-REV18.1]

indicates the successful compilation of a main FORTRAN program by the compiler. After com-
pilation of all routines in the source file, control returns to PRIMOS.

COMPILE ERROR MESSAGES
The general format of the error message is:
**** LINE nnnn [context] name - message

nnnn The source line number that the statement in error started on. All
lines read from an insert file have the same source line number as the
line with the $INSERT command on it.
If an error is detected in an EQUIVALENCE statement, the word
‘EQUIVALENCE' is substituted for ‘LINE nnnn’.

context The last 1-10 nonblank characters processed by the compiler before
detecting the error. This field can be used to isolate the position in the
statement that error occurs.

name If the error is directly related to the misuse of a specific name, that
name will be included in the error message. Otherwise, the field will
be omitted.

message A message up to 20 characters in length describing the error. If the
message is a warning, the word WARNING will be part of the
message. A list of all messages is given in Appendix A. An ERROR
message means the program did not compile; a WARNING message
means the program did compile, but not necessarily the way you
thought it would.

Example:

*#*** LINE 0010 [WRUT] UNRECOGNIZED STATEMENT
Note that the name field has been omitted.
PRIME FORTRAN COMPILER OPTIONS

All options are preceded by a dash, “-", in the command line. Options that are the PRIME-
supplied default options (i.e., those that need not be included) are indicated. The system admin-
istrator may have changed the defaults; if so, the programmer should obtain alist of the installa-
tion-specific defaults. (See figure 2-1).

P sBIG

Treats all dummy arrays as arrays that span segment boundaries and also sets the compiler to
produce 64V mode object code. If a’dummy argument array may become associated with an
array spanning a segment boundary (through a subroutine CALL statement or function refer-
ence) the compiler must be aware of this by including BIG in the option list. The code generated
here will work whether or not the array actually spans a segment boundary. See also NOBIG,
64V. See Section 6 for more information on this requirement.

pathname
B> BINARY < YES
NO

Specifies the binary (object) output file. If pathname is given, then that will be the name of the

FDR3057 2-2 1 May 1981

COMPILING 2

18

18

binary file. If YES is used, the name of the binary file will be PROGRAM.BIN (where PRO-
GRAM.FTN is the source filename). If NO is used, then no binary file is created. Omitting the
parameter is equivalent to the inclusion of -BINARY YES. (See Table 2-1.)

P DcLvARr

Flags undeclared variable. If included in the option list, the compiler will generate an error
message when a variable is used in the program, but not included in a header, specification,
storage, or external statement. The message will be generated once per undeclared variable. See
NODCLVAR.

P> DEBASE

Conserves Loader base areas. When enabled, it reduces the sector zero requirements of large
programs. The compiler generates double-word memory reference instructions and uses the
second word as an indirect link for all references to the same item within the relative reach. Use
of this option reduces sector zero usage by 70% to 80%. Programs compiled with this option can
be loaded only in the relative addressing modes (32R or 64).

P> DEBUG

Produces code allowing full use of the source level debugger (DBG). Modules compiled with
this option accept statement breakpoints from the debugger; the debugger recognizes their
statement numbers and source line numbers. The code so generated is slower and more space-
consuming; interstatement optimization is turned off. For 64V mode only. See NODEBUG,
PROD.

P DpYNM

Enables local storage in Stack Frame (Prime 50 Series). Allows dynamic allocation of local
storage and also sets the compiler to generate 64V mode object code. The DYNM option allows
better memory utilization in the 64V mode. It also allows the creation of recursive FORTRAN
subroutines (subroutines which call themselves). See SAVE, 64V.

Table 2-1. Compiler File Specifications
Compiler
Mnemonics INPUT or SOURCE LISTING BINARY
pathname First looks for file opens file named opens file named
named pathname pathname as listing pathname as
FTN,; if not found file (object) file.
then looks for file
named pathname as
source file
YES not applicable uses default filename uses default file-
for listing file. name for binary
PROGRAML.LIST file. PROGRAM.BIN
NO not applicable no listing file. no listing file.
TTY compiles prints listing on user not applicable
program as terminal.
entered from the
terminal.
SPOOL not applicable spools listing directly ~ not applicable
to line printer.
option source filename must same as NO same as YES
not be first option
invoked after FTN command.

1 May 1981

2-3

FDR3057

2 COMPILING

To use other peripheral devices such as magnetic tape, card reader, or paper tape punch/reader
for file location, see Table 2-2 for A- and B-register settings.

P> ERRLIST
Prints only error messages in the listing file. See EXPLIST, LIST,

Note
This option has no effect unless an output device/file is speci-
fied using LISTING.

P> ERRTTY Default

Prints error messages at the user terminal. The normal system default causes each statement
containing an error to be printed at the user terminal. This feature is especially useful when a

corrected program is being recompiled, to confirm that the errors have been properly corrected.
See NOERRTTY,

P> EXPLIST

Prints full listing in the listing file. The full listing consists of an assembly language type list-
ing, the source statements (with line numbers), and error messages. See ERRLIST, LIST.

Note

This option has no effect unless an output device/file is speci-
fied using LISTING.

P FP

Generate instructions from the floating-point skip set when testing the result of a floating-point
operation.

P FRN

Causes all single-precision numbers (REAL*4) to be rounded each time they are moved from a
register to main storage. The methods of rounding is: if the last mantissa bit is 1, add a 1 to the
second-to-last bit and set the last bit to 0. This rounding reduces loss of accuracy in low-order
bits when many calculations are performed on the same number. This slightly increases execu-
tion time and should be used only if maximum accuracy is a major consideration. This option
has no effect on double-precision numbers. See NOFRN,

e INPUT pathname

Specifies the pathname of the input source program (See Table 2-1). This option must not be
used if the source filename immediately follows the FTN command; otherwise, it must be
included in the option list. See SOURCE.

P INTL

Long integer default. Sets the long integer (INTEGER*4) as the default for the INTEGER state-
ment instead of the short integer (INTEGER*2). The normal INTEGER data type in Prime FOR-
TRAN is a 16-bit word. A 32-bit integer data type is available through the use of the
INTEGER*4 statement.

The long integer default option is used to simplify conversion of extant FORTRAN programs to
Prime computers. When this is enabled all variables, arrays, and functions explicitly or
implicitly specified as INTEGER will be 32-bit integers. All integer constants will be treated as
32-bit integers. Only names specifically appearing in INTEGER*2 statements will be 16-bit
integers. The 32-bit integer has a greater range than the 16-bit integer (-2147483648 to
2147483647 vs. -32768 to 32767). The 32-bit integer has the same storage requirement as the
REAL*4 (REAL) data type. See INTS,

FDR3057 2-4 1 May 1981

18

18

COMPILING 2

CAUTION

FORTRAN requires that the type of actual argument in a func-
tion reference of CALL statement must agree with the corre-
sponding dummy argument in the referenced subprogram. A
subprogram expecting a long integer must NOT be called with a
short integer (and vice versa). Most Prime-supplied sub-
routines expect short integer arguments. Care should be taken
when calling these routines (e.g., RESU$$) in a program
compiled with the LONG INTEGER default options.

Example:
CALL RESU$$ (‘AUDIT _YEAR’, INTS(10))

INTS (long-integer) is a built-in function that converts its argu-
ments to a short integer. If the INTS conversion functions are
omitted, the integer constants are compiled as long integers,
providing INTL is included in the parameter list. Do not confuse
the function INTS (long-integer) with the compiler parameter
INTS.

B INTS Default

Short integer default. Sets the INTEGER default to INTEGER*2 rather than INTEGER*4. See
INTL.

i LIST Default

Print source listing. Prints a listing of the source statements (with line numbers) and error
messages in the listing file. See ERRLIST, EXPLIST,

Note
This option has no effect unless an output device/file is speci-
fied using LISTING.

YES

/ pathname 2
P> LISTING < NO S

'ETY
SPOOL

Specifies the listing device/filename:

pathname Opens this file for the listing.

YES Uses the default name for the listing file PROGRAM.LIST (where
PROGRAM.FTN is the source).

NO No listing file is created.

TLY. The listing file is printed on the user terminal.

SPOOL The listing file is spooled directly to the line printer.

'If this_option is omitted from the option list, it is equivalent to the ~-LISTING NO parameter
inclusion (i.e., no listing file is created).

P NoBIG Default
Utilizes relative addressing. This is the usual memory addressing mode. See BIG.
» NODCLVAR Default

Suppresses undeclared variable flagging. Does not generate error messages when undeclared
variables are detected. See DCLVAR.,

1 May 1981 2-5 FDR3057

2 COMPILING

B> NODEBUG Default

Produces code without debugger information. This is the mode to be used for a completely
debugged and tested program. See DEBUG, PROD,

B> NOERRTTY

No terminal error messages. Suppresses the printing of error messages on the users terminal.
See ERRTTY,

P NOFP

Suppresses generation of floating-point skip instructions when testing the result of a floating-
point operation. Include NOFP in the option list when compiling for machines that do not have
the floating-point options. Without NOFP, the programs will still execute on such machines but
the UII time will be longer. See FP,

[NOFRN Default
Does not cause rounding of single-precision numbers. See FRN,
B> NOTRACE Default

Suppresses global trace. Does not enable the global trace. Does not override TRACE statement.
See TRACE,

P> NOXREF Default

Suppresses concordance. Do not generate any concordance (cross-reference) listing. See
XREFL, XREFS,

B orT

Optimizes all DO loops that do not contain GO TO expressions. The loops are optimized by
removal of invariant expressions and by strength reduction of expressions involving the DO-
loop index. Strength reduction can be done if the loop index is altered in the normal loop incre-
ment only and if the loop increment is invariant within the loop. See STDOPT, UNCOPT,

P> PBECB

Generates code to load Entry Control Blocks (ECBs) into procedure frame. For 64V-mode
subroutines only. See 64V,

B> PRrROD

Generates code allowing partial use of the source level debugger. Breakpoints can be set at
procedure entries and exits, not at individual statements. Variables are as accessible as in
DEBUG mode. Code is as optimized as the NODEBUG compiler code. However, storage of extra
information increases the size of the object file and thus the size of the runfile. For 64V mode
only. PROD may be used with OPT or UNCOPT. See DEBUG, NODEBUG.

2 SAVE Default
Local storage allocation. Performs local storage allocation statically. See DYNM,

P> SOURCE

Same as INPUT. See INPUT,

B> sTDOPT Default
Generates code which does not optimize DO loops. See OFT, UNCOPT,

B> TRACE

Enable global trace. When this option is included, a trace printout is generated at all assignment
statements and at every labelled statement in the program unit. The global trace affects only the

FDR3057 2-6 1 May 1981

18

COMPILING 2

program unit being compiled; it has no effect on other program units in the same executable
program. See NOTRACE,

B> uNcoPT

Unconditionally optimizes all DO loops. The optimization is performed in the same manner as
for the OPT option. If the loop GO TO statements transfer control within the loop or simply exit
the loop, then the code generated by the compiler will execute correctly. However, if any loop
contains a GO TO statement that exits to a code sequence which transfers control back inside
the loop, then the optimized code will most likely not execute correctly. This is especially true if
the code sequence modifies any operands invariant within the loop or modifies the loop index or
loop index increment. It is the programmer’s responsibility to insure that these operations are
not performed if the UNCOPT option is to be used. See OFT, STDOPT,

P> XREFL

Enable full concordance. Appends a full concordance (symbol cross-reference) listing to the

end of the program listing. The full concordance includes all symbols in the program unit. See
NOXREF, XREFS,

Note
This parameter has no effect unless an output device/file is
specified using LISTING.
P> XREFS

Enable partial concordance. Appends a partial concordance (symbol cross-reference) listing to
the end of the program listing. The partial concordance does not include symbols that are refer-
enced only in specification statements. See NOXREF, XREFL,

Note

This parameter has no effect unless an output device/file is
specified using LISTING.

An example of the concordance is:

OK, FIN POCH -L TTY -NOERRTTY -XREFS

310 X =48

(0001) 310 X =48

(0002) B = I*5

(0003) C=85—=1

(0004) I=3

(0005) 20 GO TO (100,310,320), I

(0006) 320 A =B+ C

(0007) I=1

(0008) GO TO 20

(0009) 100 Y=A*X

(0010) WRITE (1,110) X

(0011) 110 FORMAT (I5)

(0012) CALL EXIT

(0013) END
A R 000062 0006M 0009
B R 000064 0002M 0006
L R 000066 0003M 0006
EXIT R EXTERNAL 000000 0012
I i} 000070 0002 0003 0004M 0005 0007M
X R 000071 0001M 0009 0010
¥ R 000073 0009M

1 May 1981 2-7 FDR3057

2 COMPILING

$100 000041 0005 0009D
$110 000056 0010 0011D
$20 000022 0005D 0008
$310 000001 0001D 0005
$320 000030 0005 0006D

0000 ERRORS [<.MAIN.>FIN-REV18.1]
0000 ERRORS [<.MAIN,>FTN-REV18.1]

The first column is the symbol, the second is the data mode (R for real, I for integer, etc.). The
first numerical column is the storage address, the following numbers are line numbers of the
statements in which the symbols appear. If a symbol is modified (appears on the left hand side
of the = sign) the letter M is suffixed. The letter D suffix for statement label line numbers identi-
fies the line number at which that statement label is defined. A complete list of data mode codes
and line number suffixes appears in Table 2-2.

Table 2-2. Concordance Codes

Code

ASCII

COMPLEX

DOUBLE PRECISION (REAL*8)
SHORT INTEGER (INTEGER*2)
LONG INTEGER (INTEGER*4)
LOGICAL

REAL (REAL*4) - single precisions

Line Number Suffixes

Symbol is contained in the argument list of a function or sub-
routine,

Symbol is defined at this line number (statement label).
Symbol is initialized at this line (DATA statement).

Symbol is modified (left hand side of assignment statement).
Symbol is in a data mode specification statement.

O
wZ—~9 P W"C——TUO»
1

> 32R Default

32K words (64K bytes) mode. In the 32R (default) mode 64K bytes of user space are available to
each FORTRAN user. This space must accommodate the main program, subprograms, all local
storage, library routines, and the COMMAON blocks. More space is available to the user in the
64R and 64V modes. See 64R, 64V.

P 4R

64K words (128 bytes) mode. The mode gives the user 128K bytes of user space. All main pro-
grams and all subprograms executed must be compiled with the 64R parameter. When using the
linking loader utility (LOAD), the MODE command must also be used to change the load mode
to 64R. This assures the user of 128K bytes of user space. See 32R, 64V. Generally, it can be

FDR3057 2-8 1 May 1981

COMPILING 2

determined if the 64R mode must be selected by looking at the storage areas. Each area requir-
ing space such as the COMMON blocks can be examined. If the COMMON blocks require more
than 64K bytes, then the 64R mode decision is obvious. For example, if it is on a segment boun-
dary and a load is attempted resulting in an overflow, it is likely that the addresses for the
COMMON are overlapping the program area.

P v

Segmented Memory Mode. Puts the FORTRAN user into the 64V Segmented Memory mode and
allows the SEG utility to be used in lieu of the LOAD utility. This is for large programs requir-
ing more than 128K bytes of user space; it provides a user area up to 256 segments of 128K bytes
each. It may be run on any Prime 350 (or higher system). See BIG, NOBIG, 32R, 64R.

The LOAD utility and load modes are dictated by the options selected at compile time, as shown
in the following table:

o— Utility Compiler Option Load Option

LOAD 32R (default) D32R (default)
64R D64R, D32R (default)

SEG 64V 64V (only mode)

Any PRIMOS system can use either the 32R or 64R addressing mode. Only the Prime 50 Series
can have 64V addressing mode.

EXPLICIT SETTING OF THE A AND B REGISTERS

— Note
If you will not be using the paper tape punch/reader, card
punch/reader or magnetic tape for I/0 devices at compilation
time you need not read this section.

Operation
The FORTRAN compiler is invoked by the FTN command to PRIMOS.
FTN pathname [1/a-register] [2/b-register]

where pathname is the pathname of the FORTRAN source file: a-register and b-register are the
== values of the A and B registers.

The default values of the registers are:

A '1707 (binary = 0000001111000111)
Input file is on disk
No listing file
Binary file is on disk
Print error messages at user terminal
32R mode

B '0 (binary = 0000000000000000)
Short integers
No concordance
No debugger code
No DO loop optimization

If the default values of a register are used that parameter may be omitted.

FTN pathname default A and B registers
FTN pathname 1/a-reg default B register
FTN pathname 2/b-reg default A register

1 May 1981 2-9 FDR3057

2 COMPILING

For non-default values include both parameters:

F'TN pathname 1/a-reg 2/b-reg
or
FTN pathname 1/a-reg b-reg

Spaces should be used to separate components of the command line. The bit values correspond-
ing to the options are given in Table 2-3.

Input/output specifications

Additional devices are accessible to users explicitly setting the A and B registers. I/0 is speci-
fied by the A-register setting as:

Type Bits
Input (source) 8-10
Listing 11-13
Binary (object) 14-18

The settings corresponding to 1/0 files and devices are given in Table 2-4.

Default A Register Bit Reset (0) Set (1)
0 0 1
0 2 EXPLIST
0 {0 3 ERRLIST
0 4 NOTRACE TRACE
0 5 32R 64R
1 {O 6 DEBASE
1 7 NOERRTTY ERRTTY
1 8 J INPUT
7 {1 9 } | SOURCE
1 10
0 11 LISTING
0 {D 12 }
0 13
| 14
7 { 1 15 } BINARY
1 16
B Register Bit
0 0 1
0 2 PBECB
0 0 3 SAVE DYNM
0 4 PROD, NODEBUG DEBUG
0 5 STDOPT OPT, UNCOPT
0 0 6 OPT, STDOPT UNCOPT
0 7 NODEBUG DEBUG, PROD
0 8 NOBIG, 32R BIG, DYNM, 64V
0 0 9 NOBIG BIG
0 10 INTS INTL
0] 11
0o o0 12 NOXREF XREFS
0 13 NOXREF XREFL, XREFS
0 14 NOFRN FRN
0 0 15 FP NOFP
0 16 NODCLVAR DCLVAR
Figure 2-1. Bit-Mnemonic Correspondence (A and B Registers)

FDR3057 2-10 1 May 1981

COMPILING 2

18

18

Table 2-3 A- and B-register Bit Correspendences of Options (PRIME-supplied defaults are
indicated)
A(x,y) = 0(or 1): the mnemonic option causes the value of bits xand y in the A register
to be 0 [or 1).
B(x,y) = O(or 1): same as above for the B register.

BIG B(8,9) =1

BINARY A(14,15,16) = object file definition (See Table 2-4); PRIMOS BINARY
command

DCLVAR B(16) = 1

DEBASE A(6) =1

DEBUG B(4,7) = 1

DYNM B(3,8) = 1

ERRLIST A(3) =1

ERRTTY A(7) = 1; default

EXPLIST A2) =1

FP B(15) = 0; default

FRN B(14) = 1

INPUT A(8,9,10) = input file definition (See Table 2-4)

INTL B(10) = 1

INTS B(10) = 0; default

LISTING A(11,12,13) = listing file definition (see Table 2-4); PRIMOS LIST-
ING command

NOBIG B(8,9) = 0; default

NODCLVAR B(16) = 0

NODEBUG B(4,7) = 0; default

NOERRTTY A(7) =0

NOFP B(15) = 1

NOFRN B(14) = 0; default

NOTRACE Af4) = 0; default

NOXREF B(12,13) = 0; default

OPT B(5) = 1; B(6) = 0

PBECB B(2) = 1

PROD B(4) = 0; B(7) = 1

SAVE B(3) = 0; default

SOURCE A(8,9,10) = input file definition (see Table 2-4); same as INPUT.

STDOPT B(5,6) = 0; default

TRACE A4) =1

UNCOPT B(5.6) = 1

XREFL B(13) = 1

XREFS B(12,13) = 1

32R A(5) = B(8) = 0; default

64R A(5) =1

64V B(8) = 1

1 May 1981 2-11 FDR3057

2 COMPILING

Table 2-4. Bit/Device Correspondences

Bits Octal Device Mnemonic Parameter
000 0 None NO
001 1 User terminal TTY
010 2 Paper tape reader/punch —
011 3 Reserved for card
reader/punch —
100 4 Reserved for line printer —
101 5 Reserved for magnetic tape @ —
110 6 Reserved —_
111 7 Disk (PRIMOS file system) —

Disk {PRIMOS file system)

Defaults
Source 7 File System
Listing 0 None
Binary 7 File System

File unit usage

Three file units may be active during a compilation:

File Type PRIMOS file unit
Source 1
Listing 2
Obiject 3

If the disk is specified as the device for the listing and/or object file, FTN causes these files to be
opened on the disk with default names constructed as follows:

If the source file has the pathname
[MFD]>UFD1>. . .>filename

then the listing file and the object file will be opened as L __filename and B__filename respec-
tively in the UFD currently attached to. Upon completion of the FTN command all files are
closed and command returns to PRIMOS.

If the user desires the listing or binary files to be opened in UFDs other than the current one, this
must be done prior to invoking the FTN command.

The PRIMOS commands
LISTING pathname-2 opens a listing file with the specified name pathname-2 on PRIMOS file
unit 2. This inhibits FTN from opening a default listing file.

Note
Unless bits 11-13 of the A-register are set to '7, nothing will be
written into this file.

FDR3057 2-12 1 May 1981

.

COMPILING 2

The listing output(s) of more than one source file can be concatenated if all listings are gen-
erated prior to closing the listing file. For example:

LISTING pathname
FTN source-1 1/areg 2/breg
FTN source-n 1/areg 2/breg

CLOSE ALL
(note: system responses are not printed in this example)

The listing file, pathname, will contain the concatenation of all listing outputs from source-1,...,
source-n (for those compilations wherein listings were specified).

BINARY pathname-3 opens a binary (object) file with the specified name pathname-3 on
PRIMOS file unit 3. This inhibits FTN from opening a default object file.

Note
The default value of bits 14-16 of the A-register is '7 - disk file
system. If not using the default A-register values be sure to set
bits 14-16 to '7 or nothing will be written into the object file.
Object files can also be concatenated in the same manner as list-
ing files.

If the BINARY or LISTING commands are used prior to FTN to establish non-default file, then
FTN does not close these files upon completion.
After FTN returns command to PRIMOS, these files should be closed by the user by typing:

3

2

CLOSE {pathname-z } {pathname-:i }
or '
CLOSE ALL

1 May 1981 2-13 FDR3057

Debugging

-

-

INTRODUCTION

This section discusses the various debugging lools and strategies available to the Prime FOR-
TRAN programmer. For a good discussion of debugging techniques (as well as preventive pro-
gramming methodology), the reader is referred to The Elements of Programming Style.
Kernigan and Plauger, McGraw-Hill, 1978 (Second Edition).

SOURCE LEVEL DEBUGGER

Prime has available, as a separately-priced sofllware package, an interactive source level
debugger (DBG), which interfaces with FORTRAN IV program modules. Major features of this
debugger enable you to:

e Set both absolute and conditional breakpoints

¢ Request the execulion of debugger commands (action list) when a breakpoint occurs

s Execute the program slep by step

s Call subroulines or functions from debugger command level

e Trace statement execution

e Trace selected variables, printing a message when their value changes

o Print and change variable values

o Print a procedure call/return stack history (traceback)

e Examine the source file while executing within the debugger, eliminating the need for
hard-copy lislings

If you have not purchased the source level debugger, other debugging aids and techniques are
available. They are discussed below.

CODING STRATEGY

Coding strategy involves avoiding lraditional errors in order lo minimize the need for debug-
ging. (Section 4 contains information on coding optimization.]) The four major lechnigues {or
coding are:

1. Modular program structure.

2. Proper use of commenls.

3. Effective use of indenlion and spacing.

4. Inserting TRACE statements to monilor program control flow.

Modular program structure

Modular program structure is the building up of a large program or system from a set of small,
sell-contained program modules. Each module performs a discrete, specific task, and contains
all necessary comments, diagnostics and error messages. This permits the programmer to
design, code, compile, load, execute, debug and maintain each portion of the master program
individually (though certain programs may need to be run in“artificial” environments or with
test roulines that simulale other portions of the master program).

1 March 1980 3-1 FDR3057

3 DEBUGGING

Once the masler program nears completion, modular structure allows the programmer to
isolate problems back lo specilic modules, permitting simpler and more reliable bug lixes.

Proper use of comments

As pointed out in Elements of Programming Style, the proper use of comments can vastly
improve a program'’s usability by its own and other programmers, while bad comments can
seriously interfere. Comments should, as a rule, offer succinel information as to the purpose
and intent of upcoming code, and not simply restate the code,

Note
One method of commenting worth consideration is that of
placing the majority of commenls on Lhe right-hand side of the
file (the actual code being on the left). This allows the program-
mer Lo cover over comments when re-inspecting code, leading
to the possible discovery that il does not perform the claimed
lask as staled in the accompanying comment.

Effective use of indention and spacing

Indention, spacing, and blank lines, when properly used, help display the parallelism, sym-
metry and/or consistency (or lack thereof) in a given portion of code.

Inserting TRACE statements to monitor program control flow

The FORTRAN TRACE statement permits the monitoring of program control flow by display-
ing values of specilied variables whenever they are changed during program execution. TRACE
is explained in Section 6. By monitoring the values of given variables, you can often determine
at what places your program is not working as desired, and [rom there investigate the cause.

COMPILER USAGE
Compile-time debugging consists of the following operations:

1. Syntax checking and compile-time errors.
2. DCLVAR and global TRACE compiler options.

Syntax checking

The FORTRAN compiler aulomatically performs syntax checking as part of the compiling
process. Syntax errors are usually due to coding or lyping errors. (Remember that what the
compiler perceives as a syntax error may often be the result of some other error elsewherein the
program; e.g., the compiler will flag the statement GOTO 140 if there is no statement 140, or il
there is an error in slatement 140.)

If your program has syntax errors, do not attempt to load and execule il; make the necessary
corrections first.

Other compile-time errors

The compiler also checks for non-syntactical errors, such as program length exceeding avail-
able user space. As with synlactical errors, do not attempt to load and execute a program which
has non-synlactical errors.

The DCLVAR and global TRACE compiler options

The DCLVAR option to the FTN command causes the compiler to [lag all variables which are
nol explicitly declared in header, specification, storage, or external statements. This procedure
often uncovers minor spelling errors in the source file (e.g., you declared the variable TEMP, bul
elsewhere typed it as TMEP).

FDR3057 3-2 1 March 1980

DEBUGGING 3

The TRACE eption produces a trace for every variahle in the program. This option takes
precedence over any TRACE statement in your FORTRAN program, and is particularly helpful
in conjunction with the PRIMOS COMOUTPUT command (given prior to the FTN command),
which will thus send all TRACE oulput to a file. (See the Prime User's Guide for COMOUTPUT
information).

See Section 2 for more informalion on these compiler oplions,

1 March 1980 3-3
FDR3057

Optimization and

other helpful hints

INTRODUCTION

This section presents some programming hints for improving the performance of FORTRAN
roulines. Some of them are merely reminders of good coding praclice; others take advantage of
implementation techniques in the FTN compiler. All offer some speedup in program execution.

DO LOOPS

1. Remove invariant expressions from DO loops. For example,

01\ rIr =1, 50
A= 3.01

14 CONTINUE

should be changed to:
A= 3.01

o181 =1, 50

10 CONTINUE
2. Opiimize unnecessary subscript calculations. The lirst source code sequence is more effi-
cienl than the second one below.
S5UM =0

Do 181 =1, 99
SUM = SUM + ARRAY (I)

10 CONTINUE
ARRAY (N} = ARRAY (N) + SU

DO 1A T =1, 90
ARRAY (N) = ARRAY(N) + ARRAY ()
1% CONTINUE
3. Minimize DO Loop Setup Time. When nesting DO Loops (also any hand-coded control struc-
tures), order the loops so that the fewer iteration counlt loops are on the outside, and the higher

iteration count loops are on the inside.
Example: 1:

D021 =1, 5

DO 18 J =1, 140

I March 1980 4-1 FDR3057

4 OPTIMIZATION AND OTHER HELPFUL HINTS

loop-body

10 CONTINUE
20 CONTINUE

Example 2:
PO 20 J =1, 100
Do 19 1 =

loop-body

19 CONTINUE
200 CONTINUE

Example 1 is the preferred control struclure for the lollowing reasons. The execution lime for a
DO loop consisls of three major items:

1. Setup time (I's) — the lime required to inilialize the index.

2. Increment and lesl time (Ti) — the lime taken each time the flow of control hits the
bottom of the loop.

3. Time to execute the body of the loop (Th).

For examples 1 and 2 above, the time required to execute the DO 10 loops is:
1. Time(1)=5 x [TS +100Ti + 100Th)
2. Time(2) = 100 x (Ts + 5Ti + 5Th)
which yields:
1. Time(1) = 5Ts + 500Ti + 5007Tb
2. Time(2) = 100Ts + 5007Ti + 500Th
Time (1) is smaller, making it the preferred structure.

4. Use CONTINUE Statements. Always end DO loops with a CONTINUE stalement. This is a
special case of statement number usage, described below.

STATEMENT NUMBERS

Eliminate all unnecessary statement numbers, i.e., those that program control will never access.
Mos! optimizations are performed between stalement numbers; therefore the fewer statement
numbers, the more oplimization possible. For example.

TP (T & 0 J =&

can be more elficient and is easier to read than:

IF (I .NE. O) GOTO 19
J =K
10 next-statement

FDR3057 4-2 1 Mareh 1980

A

OPTIMIZATION AND OTHER HELPFUL HINTS 4

MULTI-DIMENSIONED ARRAYS

Reference memory as sequentially as possible. For multi-dimensioned arrays, the leftmost sub-
scripl varies the fastest in FORTRAN, so when addressing large portions of an array, paging
and working set can be significantly reduced by indexing the leftmost subscript the fastest
(e.g., in the innermost loop). Thus,

DO 201 =1, 108
DO 163 =1, 160
ARRAY (J, I) = 3.0
16 CONTINUE
20 CONTINUE
is more efficient than accessing the structure as ARRAY (I, [) = 3.0.

If the program can be coded CLEANLY without multiple-dimension slruclures, memory
addressing can be more efficient. For each dimension over one, this saves cne ‘multiply’ per
effective address calculation; i.e., number-of-multiples = number-of-dimensions - 1. For
instance, the example above could be written as:

DIMENSION TARRAY (1)
EQUIVALENCE (ARRAY (1,1), TARRAY (1))

Do 14 1 =1, 149060
TARRAY (I) = 3.0
161 CONTINUE

saving considerable CPU time.

LOAD SEQUENCE AND MEMORY ALLOCATION

Paging time can be significantly reduced by ordering routines by frequency of use (rather than,
say, alphabetically). The Main routine must always be loaded firs! for LOAD or SEG to work
properly.

A suitable loading scheme would allocate memory as:
MAIN
END
most common subroutines

occasionally used subroutines

infrequently used subroutines

Paged memory fragmentation can be reduced by loading routines on page boundaries using
SEG’s P/LO command.

[n subroutine libraries, the top down tree structure must be preserved if ‘reset force load' is in

use.

This ordering method may also be used to order COMMON blocks in memory by [requency of
use. See the LOAD and SEG Reference Guide for details,

1 March 1980 4-3 FDR3057
. e

4 OPTIMIZATION AND OTHER HELPFUL HINTS

FUNCTION CALLS

Eliminale redundant function calls with equal arguments. For example:
TEMP = SIN (X)
A = TEMP * TEMP

is significantly faster than:

A = SIN(X) * SIN(X)

Make sure that the function has no side effects which might modily the argument(s) or anything
else in lhe environmentl.

V-MODE VS. R-MODE COMPILATION

In almost all cases, V-mode code executes faster than R-mode code. I[[a V-mode program plus
dala is less than 64K words, and the rouline is not to be shared, use the MIX command of SEG
(see the LOAD and SEG Reflerence Guide) (o compact the memory image.

64V-MODE COMMON

The FORTRAN compiler and SEG allow some 64V mode FORTRAN programs lasler access to
variables in COMMON. If a COMMON block is loaded into the same segmenl as the procedure
area or link area which accesses il, the compiled program will address the COMMON variables
directly, rather than through a two-word indirect poinler. Thus, careful loading of roulines
with frequently accessed COMMON areas into the same segmen! in 64V mode will cause an
appreciable increase in execulion speed.

IF STATEMENTS
Minimize compound logical connectives within an IF statemenl when possible. For example,

IF (A.ED.B .OR. C.EQ.D) G0OTO 10

has the same effect as, but is slower than:

IF (A.EQ.B) GOTO 10
IF (C.EQ.D) GOTO 1

INPUT/OUTPUT

Signilican! speed improvement in raw dala translers can be achieved by using the equivalent
10CS or file syslem routine inslead of formatted input/output. For example,

INTEGER TEXT (40)
READ (5, 20, END = 99) TEXT
20 FORMAT (4@A2)

is slower than

INTEGER TEXT (4d)

CALL RDASC(5, TEXT, 44, $99)
but the fastest yel is . ..

INTEGER TEXT (4@), CODE

CALL RDLINS (1, TEXT, 49, CODE)

IF(CODE .NE. @) /* Any error?
X GOTO 99 /*Yes, go process error.

There are also roulines for reading/wriling octal, decimal, and one-unit hexadecimal numbers

from/to the terminal. For example, CALL TIHEX(N), will read a hexadecimal inleger from the
terminal into the 16-bil integer named N. For printing out text elfliciently, use the

FDR3067 4-4 1 March 1980

OPTIMIZATION AND OTHER HELPFUL HINTS 4

TNOU/TNOUA routines. See the Reference Guide, PRIMOS Subroulines for more specilic
information aboult these lower level routines.

STATEMENT SEQUENCE

The compiler can do register lracking, hut cannol reorder stalements. For example, given the
sequence:

A=DB
X=Y
R=B8B

the generated code is

LDA B
STA A
LDA'Y (6 inslructions long)
STA X
LDA B
STA R

If the source had been rearranged to

A=B
R=0
X=Y

the generated code is reduced to:

LDA B
STA A
STAR (5 inslruclions long)
LDA'Y
STA X

PARAMETER STATEMENTS

Initializing named constants via PARAMETER stalements allows the compiler to perform
constant-folding optimizations. The compiler does not fold normal variables initialized by
DATA statements into constants.

INEFFICIENT LIBRARY CALLS

Some of the library routines are not optimized for time-critical operations. The get and store
character routines (GCHRS$A, elc.) are convenient, bul comparatively slow. Some of the
APPLIB routines are by definition slow. Avoid using the MAX and MIN calls especially in V-
mode. It may be more efficient to code it yourself.

Remember the 80/20 rule, which states: 80 percent of a program's time is spenl in 20 percent of
the code” (exact numbers subject to debate). Therefore, standard library routines are adequate
in the non-time-critical 80 percent of the program,

STATEMENT FUNCTIONS AND SUBROUTINES

Use statement functions instead of formal FUNCTION subprograms when practical. In V-mode
this eliminates a lengthy PCL/PRTN sequence. Try to minimize the number of arguments
passed to and from a function or subroutine regardless of whetherit is a statement functionora
separate function subprogram.

1 March 1980 4-5 FDR3057

4 OPTIMIZATION AND OTHER HELPFUL HINTS

INTEGER DIVIDES

When dividing a non-negative integer by a power of two, use the RS (right shift) binary intrin-
sic function. For example:

I =RS(], 3)

Is much faster than:

1=1]/8

LOGICAL VS. ARITHMETIC IF

Logical IFs are preferred to arithmetic IF stalements. Many FORTRAN programs have sections
which look like:

2

IF({I-])1, 21
next-statement

some-olher-statement

A more oplimal code sequence would be:

1

2

IF (1. EQ. J) GOTO 2
nexl-statement

some-olher-statement

which is also more readable.

USE OF THE COMPILER'S-DYNM OPTION

V-mode programs run lasler, betler, and cleaner if local variables are placed in the slack
through the -DYNM option. These variables are not guaranleed lo be valid after a return. For

example:

INTEGER COUNT
DATA COUNT /0/

IF(COUNT .NE. 12) GOTO 1

CALL TONL
COUNT = @

COUNT = COUNT + 1
some-more—code
RETURN
END

The above example would not work if compiled with the -DYNM option, because the value ol
COUNT would not be saved after execution of the RETURN stalement.

FDR3057

4-6 1 March 1980

—h—

OPTIMIZATION AND OTHER HELPFUL HINTS 4

CONCLUSION

These are some ol the more common guidelines (o keep in mind while programming in Prime
FORTRAN. I you keep these ideas in mind while writing, or while ‘tweaking' FORTRAN
programs. your programs will be generally smaller and faster. Some of these rules are nol
necessarily permanent. As Prime FORTRAN evolves more and more optimizations, the user
will have more [reedom to choose coding styles.

Generally it is easier lo apply these techniques at initial coding time, as opposed Lo ‘going back
and optimizing’. While some of these changes can be done easily wilh a few Edilor Lricks, others
may require extensive changes to source code. Many other useful examples of good FORTRAN
programming practice appear in the [ollowing tex!:

Kernigan and Plaugher, The Elements of Programming Sivle, McGraw-Hill, 1974
(=] (=] i B,

REQUEST FOR CONTRIBUTIONS TO THIS SECTION

If you have optimizing techniques in Prime FORTRAN that you would like to share with future
readers, please submil them to: Technical Publications, Prime Compuler, Inc., 500 Old Connec-
ticul Path, Framingham, MA 01701,

1 March 1980 4-7 FDR3057

FORTRAN

language elements

LEGAL CHARACTER SET
The characters allowed in Prime FORTRAN are:

» The 26 upper-case letters: A,B,C,D,E,F,GH,1J,K,LLM,N,0OP,QR,S5TUVWXY.Z
s The 10 digits: 0,1,2,3,4,5,6,7.8,9.

Letters and digits together are called alphanumeric characlers.
¢ These 12 special characters:

= equals

" single quote (apostrophe)
: colon

+ plus

- minus

asterisk

slash

left parenthesis
right parenthesis
, comma

decimal poinl
dollar sign

— — e "

A -

y

« Blanks or spaces.

Blanks in Hollerith constants (character strings) or in formatted input/output statements are
treated as character positions. Elsewhere in Prime FORTRAN, blanks have no meaning and can
be used as desired to improve program legibility.

LINE FORMAT

Each program line is a string of 1 to 72 characters. Each character position in the line is called a
column, numbered from left to right starting with 1. These are three types of lines: Comments,
statements (and their continuations), and control statements. (See Figure 5-1.)

Comments
Comment lines are identified by the letter C in column 1. The remainder of the line may contain
anything. A comment line is ignored by the compiler, except that it is printed in the program
listing. A comment may be placed on a statement line (except inside a Hollerith constant) using
the format:

/*comment?*/

Statements

Columns 1-5 are reserved for the numerical statement label, if any. (Blanks and leading zeros
are ignored.) Column 6 must be a blank or a zero. Columns 7-72 contain the statement. The
statement may begin with leading blanks; this is often done to make the program easier to read,
as for indention of nested DO loops or nested IF stalements. In the continuation of a statement,

1 March 1980 5-1 FDR3057

5 FORTRAN LANGUAGE ELEMENTS

columns 1-5 must be blank, column 6 may be any character EXCEPT 0 (zero) or a blank, and the

statement continuation is in columns 7-72.

Control

Column 1 must contain the special character $. Other columns are specified by the individual

control operation. (See, for example, $INSERT in Section 6.)

Columns 73 to 80 are available for line order sequence numbers or other identification (usageis
optional). These columns, like comments, are ignored by the compiler except that they are

printed in the program listing.

COLUMN NUMBER
12 567 72 73 80
11 I l
| | [
IC COMMENT TEXT |
1 L
: c2232Y = STATEMENT »| SEQUENCE NUMBER
|
} ilabbbbzg-— STATEMENT CONTINUATION *I 4
|
I$! CONTROL —= =| 4
T (| |
aaaaa Statement label (optional)
bbbbb Blanks
y Blank or zero
z Any character except blank or zero
{ NOTE: Comments may be extended past column 72 to column 80,

NPFRANDNDS
UEniNio

Operands are those elemenls which are manipulated by the program. They are constants, para-

melers, variables, arrays, and address constants.

Constants
See appendix D for details of constant storage.

Constants may be any of the following types:

FDR3057 5-2

Memory
Mode Words Range
INTEGER (short) 1 -32768 to +32767
INTEGER (long) 2 -2147483648 to +2147483647
(-2**31 to +2**31-1)
REAL 2 + (10**-38 to 10**38)
DOUBLE PRECISION 4 + (10**-9902 to 10**9825)
COMPLEX A) same as for Real
LOGICAL 1 0 or 1 (i.e., .FALSE. or .TRUE.)

1 March 1980

.

FORTRAN LANGUAGE ELEMENTS 5

Integers: may be decimal or oclal numbers. In either case, no decimal point appears in the repre-
sentation. Short integers may have up to 5 decimal digits or 6 octal digits, plus a sign, within the
magnitude range.

decimal 12345 or -23579
octal 213752 or =156, or
5013752 or -30156

(The O notation is obsolete. It is supported for compatibility; use is not
recommended)
Short integers range in magnitude from 0 to 32767 (decimal); i.c., :0 to :077777 [octal). The
number -32768 is a long integer in its decimal representation, but a short integer in its octal
representation.
Long integers may have any number of digits (plus asign) - only the magnitudeis restricted, for
E!.\';lITJ]JiE’. 000000000000000000001.
The representation is the same as shorl inlegers. Long integers range from 0 (:000000) to
2147483647 (217777777777 and from -2147483648 (:20000000000) to -1 (:37777777777). The
range is from -(2**+31) to +(2"*31-1). The number -2147483648 can be represenied in octal but
not in decimal form.
Integer conslants are treated as short integers unless:

= Their magnitude exceeds 32767 or 1177777 (oclal).

e Their representation exceeds 5 decimal digilts or 6 oclal digits; leading zeros are
counted in determining the number of digils in the constant.

Example:

30 short integer

000030 long integer
If the program is compiled with INTL then all integer constants are treated as long integers.
(See Section 2 [or delails.)

Long integers may be used in the FORTRAN program anywhere that shorl integers are used.
This includes subscripts, ASSIGNed GOTOs, computed GOTOs, FORTRAN 170 unit num-
bers, DO-loop index values, and character counts.

CAUTION
Some subroulines expect short integers as arguments. In these
cases, converl any long integers to short integers via the INTS
function (see Section 8 for details).

Real numbers: may be wrilten as
1357.924, or 0.3579 F 02

The decimal point is manddatory in the first case. In the exponential form the decimal point is
optinnal; the exponent rances from -38 to =38, The pesition following the E mus! contain a
Blank, a plus sign. or a mmus sign. The blank is interpreted as a plus sign.

Only the seven most signilicant digits are retained.

Double-precision numbers: are similar to real numbers except that fourteen significant digits are

retained and the exponential (or floating point) representation uses D in place of E. The D format is
mandatory for double-precision numbers. For example: 19

12345.9253 D-11

The exponent (following D) may take on values from -9902 to +9825. Only 3 digits can be 18
printed from the exponents (see FORMATS, Section 6).

I Julv 1982
July 198 5-3 FDR3057

5 FORTRAN LANGUAGE ELEMENTS

Complex numbers: are an ordered pair of two real numbers enclosed in parentheses and
separated by a comma:

(REAL1, REAL2) e.g., (1.345, 0.59 E-2)

The rules for real number representation apply to each element of the complex number.

Logical constants: logical constants have only two possible values:

0 (zero) corresponding to .FALSE.
1 (one) corresponding to .TRUE.

ASCII: ASCII constants are character strings. They are stored as follows:

Maximum Number of
Mode ASCIH Characters Stored
Integer, short 2
Integer, long 4
Real 4
Double Precision 8
Complex 8

When character strings are compared, bit-by-bit checking is only done for those stored in
integers; hence storage in modes other than integer (long or short) should be avoided.

Characters are left justified and the remainder of the word(s) are packed with blanks.

ASCII constants are represented in either of two ways:

1. A character count followed by the letter H and the string:

23HTHIS IS AN ASCII STRING

2. The string enclosed in single quotes:

'"THIS IS AN ASCII STRING'

A single quote may be represented in a string by using two single quotes (") NOT a double
quote.) This will count as one character.

Example:

WRITE (1,1)
1 FORMAT ('AB''C")

will print AB'C at the terminal.

Parameters

Paramelers are named constants and may be ol any dala mode. They may be used in the pro-
gram anywhere a constant can be used, excepl in FORMAT stalements: they may also appearin
DATA and DIMENSION statements. Paramelers are loaded at compile time, and the code gen-
erated [or them is identical 1o that generaled for constanls (see the PARAMETER statement in
Section 6).

Variables

Variable names have from 1 to 6 characters. Character 1 must be alphabetic; characters 2-5 (il
any) must be alphanumeric.

FDR3057 5-4 1 May 1981

FORTRAN LANGUAGE ELEMENTS 5

If no modes are specifically declared, then all variables whose names begin with the letters I, |,
K, L, M, N, are integer mode, and variables whose names begin with A-H, or O-Z are real mode.
Check Section 6, Specification Statements, for instructions on how to override this implicit
convention and also specify double precision, complex and logical modes.

Arrays
Arrays are ordered multidimensional sets of data represented as:
ANAME (I1,12,. . .In).

TheI's are the indexes (subscripts) of the array, and must be positive integers (constants, para-
meters, or variables). All elements of the array must be of the same mode — integer (short or
long), real, double precision, complex, or logical. An array may have from 1 to 7 subscripts.

The total size of all arrays not in COMMON may not exceed one segment (128K bytes). If arrays
are larger than one segment, they must be put into COMMON blocks.

GENERALIZED SUBSCRIPTS
There is no syntactical limitation on subscript expressions. The FORTRAN compiler allows
any integer-valued expression as an array subscript.

Use of generalized subscripts
Array references have the form

A(S1,82,. . .Sn)
A is the array name
Si is a subscript expression (1<=i<=7]

A subscript expression is any legal FORTRAN long- or short-integer-valued expression. It may
contain constants, variables, function references, intrinsic references, and other array refer-
ences. The nesting limit on any expression is 32 levels of parentheses, whether syntactical,
array, or function reference parentheses. Non-integer constants and variables are not allowed
within subscript expressions.

AT b
Wote
iNULD

Conversion functions (such as IDINT, IFIX, INT) may be used

to convert non-integer expressions to integer within a subscript

expression.

No more than seven subscripts may be used to index an array.
Example:

The following FORTRAN program illustrates the use of generalized subscripts. It deliberately
contains some rather bizarre expressions which show the flexibility of subscripting, but is not
intended as a model of good coding practice. ([POOP is a REAL-valued function.)

&

C GENERALIZED SUBSCRIPTS

G
REAL A(100,100) ,B(14) ,2
INTEGER G (3,4,5) ,H (3000) ,1,J,K

C

C ASSIGNMENT

&

Z=A(G (H (25**K**2) ,2,RS(I ,H(2))) ,INTS (Z-A(1,18*H (J))))
* +B (INTS (POOP (2)))

1 March 1980 5-5 FDR3057

5 FORTRAN LANGUAGE ELEMENTS

[ON@]

IF

@]

IF(Z.NE.B (RS (K,H(X*5)))) GOTO 14303
CALL
CALL POOP1 (A(H4(INTS(POOP(1))),G(1,J*2,1)),2)

ETC.

OO0 ~000
@
=2
0

END

Address constants

Address constanls consisl of a statemenl label prefixed by a dollar sign ($). They conlain the
memory address of the first line of code generated by the statement label whose value is that of
the address constant. For example, if, 100 A=B*C is a statement in the program, then $100is the
address of the code generaled by thal slatemenl. The address conslant is an integer value. Il is
usually used in conjunclion with the ALTRTN from exlernal subroutines (these are alternate

relurns generated by encountering errors in executing the subroutines).
OPERATORS

Operalors modily an operand or concatenate lwo operands.

Logical operators

FORTRAN's logical operalors are: NOT., .AND., .OR. (in this section, P and Q have been speci-

fied as logical variables.

NOT.: .NOT. Q negates the value of Q.

Q NOT.Q
TRUE. .FALSE.
FALSE. JTRUE.

AND.: P.AND. Q is the logical ANDing of the bits of P and Q) (set intersection).

P
Q JTRUE. FALSE.
TRUE. JTRUE. FALSE.
FALSE. FALSE. FALSE.

OR.: P .OR. Q is the logical non-exclusive ORing of P and Q (set union).

P
Q TRUE. JFALSE.
TRUE. TRUE. JTRUE.
JFALSE. TRUE. FALSE.
Arithmetic operators

i Exponentiation

Unary minus

Multiplication
/ Division
+ Addition
- Subtraction
= Equality or replacement

w
|
(=2}

FDR3057

1 Marecii 1980

FORTRAN LANGUAGE ELEMENTS 5

Relational operators

LT Less than

IE. Less than or equal to
EQ. Equalto

NE. Not equal to

.GT. Greater than

.GE. Greater than or equal (o

Operator priority

FORTRAN evaluates operators within expressions in the following order:

= Exponentiation

- Unary Minus

* or/ Multiplication or division
+0r - Addition or subtraction

LT.:LE..E(,,
Relational operators
NE.,.GT.,.GE.

NOT. Logical negation
AND. Logical intersection
.OR. Logical union

At equal level of operators, priorily evaluation generally proceeds from left to right. However,
the compiler takes advantage of groupings of elements (in accordance with mathematical rules)
and, as a result of this, evaluation may sometimes not be strictly left-to-right (See note below).
Expressions within parentheses are evaluated before operations outside the parenthese are
performed.

Note

When two elements are combined by an operator, the order of
evaluation of the elements is optional. If mathematical use of
operators is associatlive, commutative, or both, full use of these
facts may be made to revise orders of combination, provided
only that integrity of parenthesized expressions is not violated.
The results of different permissible orders of combination even
though mathematically identical need nol be computationally
identical. See: Section 6.4, para. 2, ANSI X3.9-1966

PROGRAM COMPOSITION

Each program (or subroutine or external function) consists of a number of program lines. Pro-
gram lines are grouped and ordered by type of statement as shown in Figure 5-2. Comments and
TRACE and LIST control stalements can be used anywhere in the program. The END statement
must be the last statement of a program; nothing may follow END except FUNCTION or SUB-
ROUTINE of another subprogram. The types of statements are discussed in Section 6.

1 March 1980 5-7 FDR3057

5 FORTRAN LANGUAGE ELEMENTS

Header statement, if required:
FUNCTION, SUBROUTINE, BLOCK DATA
Storage and Specification Statements:

COMMON, DIMENSION, EQUIVALENCE, SAVE, EXTERNAL, COMPLEX, DOUBLE
PRECISION, INTEGER, INTEGER*2, INTEGER*4, LOGICAL, REAL, REAL™4,
REAL*8, IMPLICIT, PARAMETER

DATA Statements
Statement Function Definitions

Executable Statements

Arithmetic and logical assignments

Control Statements: GOTOQ, ASSIGN, IF, DO, CONTINUE, PAUSE,
STOP, RETURN

Input/Output Statements: READ, WRITE, PRINT, FORMAT, REWIND,
BACKSPACE, END FILE

Subroutines: CALL subrname [(arg-1,. . .,arg-n)]

END Statement

Figure 5-2. Source Program Composition

1 March 1980

t47]
|
o]

FIDR3057

FORTRAN statements

PN

ASSIGN
BACKSPACE
BLOCK DATA
CALL
COMMON
COMPLEX
CONTINUE
DATA
DECODE
DIMENSION
DO

DOUBLE PRECISION

ENCODE
END
ENDFILE
EQUIVALENCE
EXTERNAL
FORMAT
FULL LIST
FUNCTION
G0 TO

IF

IMPLICIT
INTEGER
INTEGER*2
INTEGER*4
LIST
LOGICAL
mode FUNCTION
NO LIST
PARAMETER
PAUSE
PRINT

READ

REAL
REAL*4
REAL*8
RETURN
REWIND
SAVE

1 March 1980

Legal statements for Prime FORTRAN 1V are listed below with their functional category.

Control

Device Control
Header

External Procedure
Storage
Specification
Conlrol

Data initializalion
Coding

Storage

Control
Specification
Coding

Control

Device Conlrol
Storage

External Procedure
Format

Compilation/Run-Time Control

Header
Control
Control
Specilicalion
Specilication
Specification
Specification

Compilation/Run-Time Control

Specification
Header

Compilation/Run-Time Control

Specification
Control
Input/Oulput
Input/Qulput
Specification
Specification
Specification
Control

Device Control
Storage

6-1

6 FORTRAN STATEMENTS

STOP Control

SUBROUTINE Header

TRACE Compilation/Run-Time Control
WRITE Input/Output

SINSERT Compilation/Run-Time Control

In this reference, section statements are grouped in functional order to clarify and simplify dis-
cussion, as follows:

1. Header Statements:

« BLOCK DATA
» FUNCTION
s« SUBROUTINE

2. Specification Statements:

o IMPLICIT

. mode: COMPLEX, LOGICAL, DOUBLE PRECISION, REAL, REAL*4, REAL*8,
INTEGER, INTEGER*2, INTEGER*4.

« PARAMETER

3. Storage Statements:

« COMMON
« DIMENSION

« EQUIVALENCE
s SAVE

4. External Statements:

» CALL
» EXTERNAL

5. Data Definition Statemenis:
« DATA

6. Compilation and Run-Time Control Statements:

FULL LIST
LIST

NO LIST
TRACE
$INSERT

e © © © @

7. Assignment Statements

8. Conirol Statements

ASSIGN
CONTINUE
DO

END

GO TO

IF

PAUSE
RETURN
STOP

@ © ¢ © o & o & o

9. Input/Output Statements:

s PRINT
« READ
« WRITE

FDR3057 6-2 1 March 1980

18

FORTRAN STATEMENTS 6

10. Coding Statements:

« DECODE
» ENCODE

11. Format Statements:
« FORMAT

12. Device Control Statements:

» BACKSPACE
« ENDFILE
« REWIND

13. Functions

14. Subroutines

HEADER STATEMENTS FOR SUBPROGRAMS

BLOCK DATA statement

BLOCK DATA

The BLOCK DATA statement labels a block data subprogram. This type of subprogram labels
COMMON areas and then initializes data values within these areas via DATA statements.
Block data subprograms are compiled separately and linked to the main program by the Loader.

FUNCTION statements
[mode] FUNCTION name (argument-1[, argument-2, . . . argument-n])

The arguments are a non-empty list of the arguments passed by the calling program. There is no
syntactical upper limit to the number of arguments. However, long lists will slow execution.
The name is both the name of the function in the calling program and the variable that returns
the value calculated by the function. The mode is an optional specification of one of the data
types, selected from the following list:

COMPLEX LOGICAL

INTEGER REAL*4 (REAL)

INTEGER*2 REAL*8 (DOUBLE PRECISION)
INTEGER*4

If no mode is specified, FORTRAN will assign one implicitly based upon the first letter of the
function name (i.e., [—=N=Integer, A-H or O—Z=REAL.)

SUBROUTINE statements
SUBROUTINE name [{argument-1 argument-2 ... argument-n}]

The arguments are a list of arguments, some of which are passed by the calling program; others
are dummy arguments whose values are calculated by the subroutine and returned to the call-
ing program. There is no syntactical upper limit to the number of arguments. However, long
lists will slow execution.

CAUTION

In Prime's FORTRAN, subroutine arguments are passed by
address (location) rather than by value. Thus, it is extremely
important not to place constants or parameters in the argument
list as arguments which will be returned, since this will alter
their value. Also, returned arguments may not be expressions.

1 May 1981 6-3 FDR3057

6 FORTRAN STATEMENTS

Example:
I=5 prints on user terminal
PRINT 10,I 5
CALL SUBL1(I,5)
I=5
PRINT 14,1 25

19 FORMAT (I2)

SUBROUTINE SUBL (J,K)
K=J#%2

RETURN

END

SPECIFICATION STATEMENTS

FORTRAN automatically assigns modes to all variables, parameters, arrays, and functions
(except intrinsics) that do not appear in mode specification statements. The FORTRAN
language default is as follows: if the symbol's first character is I through N (inclusive), the
symbol is typed as integer; all others (A—H, O—Z) are typed as real. The default integers are
short integers unless the program is compiled with the long integer default — see Section 2.

IMPLICIT statements
IMPLICIT mode-1 (list-1), mode-2 (list-2), . . .,mode-n (list-n)

The IMPLICIT statement allows the programmer to override the language convention for
default data typing. Each mode is a data mode such as REAL*4, COMPLEX, etc. Each list lists
the letters to be typed as the mode specification. Letters may be separated by a comma or an
inclusive group of letters may be indicated with a dash.

Symbols not typed in this statement and not specified in mode specification statements will
revert to the FORTRAN language default.

Example:
IMPLICIT DOUBLE PRECISION (A,M—Z], LOGICAL (B)

First letter of symbol Type

A, or M through Z Double Precision
B Logical

C through H Real

I through L Integer

If used, the IMPLICIT statement must be the first statement of a main program, or the second
statement of a subprogram. IMPLICIT typing does not affect intrinsic or basic external
functions. IMPLICIT affects all symbols not otherwise typed. This includes dummy variables
in the first statement of a subroutine or function. The user should take care to make sure that
these dummy variable symbols will be of the proper data type.

Mode specification statements

mode [V1, V2, ..., Vn]

The mode specification statement allows override of the implicit mode assignments of symbol
names which was done either by IMPLICIT or language default.

The word mode is replaced by one of the nine data mode specifications:

FDR3057 6-4 1 May 1981

FORTRAN STATEMENTS 6

COMPLEX

DOUBLE PRECISION (same as REAL*8)
INTEGER

INTEGER*2

INTEGER*4

LOGICAL

REAL [same as REAL*4)

REAL*4 (same as REAL)

REAL*8 (same as DOUBLE PRECISION)

The V's are a list of variable names, parameter names, array names, function names, or array
declarers.

Recognition of synonymous specifications is designed to ease conversion of extant programs to
the Prime FORTRAN system. INTEGER will normally default to INTEGER*2 (short integer)
unless the program is compiled including the INTL option. In this case, INTEGER will default
to INTEGER*4 (long integer). It is recommended in new programs that the programmer
explicitly use INTEGER*2 and INTEGER*4 specifications. (See Section 2 for compiler
information.)

Global mode definition occurs if a mode specification does not include a symbol list. In this
case, all symbols which do not appear in specification statements and whose first appearance
follows this global mode statement are declared to be of this globally-specified mode.

CAUTION

The use of global mode and the IMPLICIT statement in the same
program unit is prohibited. The global mode is functionally
replaced by the IMPLICIT statement. The use of the IMPLICIT
statement is strongly recommended as a superior programming
technique. The global mode is still supported by the FORTRAN
system to allow the use of existing programs utilizing it.

PARAMETER statement
PARAMETER (V1=C2, ..., Vn=Cn)

Where the V’s are variables (arrays are not allowed) and the C's are constants or constant
expressions of the same mode as the corresponding variables. The operands in the constant
expressions may be constants or previously defined parameters. Allowed operations include +,
-, * and/ on INTEGER*2, REAL*8, and REAL*4 operands. INTEGER*2 XOR, OR, AND, MOD,
shift, and truncate function references are also allowed. An error message, ILL. CONSTANT
EXPR., is generated if these restrictions are violated. The variable names must be typed
explicitly prior to the PARAMETER statement or default-typed implicitly. All other uses of the
PARAMETER names must follow the PARAMETER statement. PARAMETER names may be
used wherever a constant would be used (including DATA AND DIMENSION statements)
except in FORMAT statements. Since the parameters are named constants, PARAMETER
names may not be used in COMMON or EQUIVALENCE statements.

Enclosing the parameter list in parentheses is required by the FORTRAN 77 standard. Prime's
FORTRAN will accept a PARAMETER statement with or without the parentheses.

STORAGE STATEMENTS

COMMON statement
COMMON /X1/A1/... /Xn/An

Where each A is a non-empty list of variable names or array names, and each X is a COMMON
block name or is empty (blank COMMON). The COMMON block names must not be identical

1 March 1980 6-5 FDR3057

6 FORTRAN STATEMENTS

with names of subprograms called or FORTRAN library subroutines. Data items are assigned
sequentially within a COMMON block in the order of appearance. The loader program assigns
all COMMON blocks with the same name to the same area, regardless of the program or
subprogram in which they are defined. Blank COMMON data are assigned in such a way that
they overlap the loader program, thereby making the memory area occupied by the loader
program available for data storage.

MNote

The form / / (with no characters except blanks between slashes)
may be used to denote blank COMMON.

The number of words that a COMMON block occupies depends on the number of elements, the
mode of the elements, and the interrelalions between the elements specified by an
EQUIVALENCE statement. COMMON blocks that appear with the same block name (or no
name) in various programs or subprograms ol the same job are not required to have elements
within the block agree in name, mode, or order, but the blocks must agree in total words.

As an aid to system-level programming, the compiler defines absolute memory location '00001
as the origin of a COMMON block named ‘'LIST".

It is customary to assign an array called LIST into the labeled COMMON area called LIST, such
that the first word in this array is location '00001, the sixth word location '000086, etc., as in:

COMMON/LIST/LIST(1)

Effectively, the subscript of array LIST is the actual memory address. This feature is not
required when compiling in 64V mode.

COMMON blocks over 64K words long

The size of COMMON blocks and the arrays within them are limited only by the number of
segments available to the user. A total of 256 segments is available for assignments to users.
The size of a 64V mode program includes COMMON blocks and the procedure, linkage and
stack frames of the main program, subprograms and required library routines.

Usage: Any named COMMON or blank COMMON may be over 64K; no special syntax is
required. The only indication that a COMMON block is over 64K is in the concordance,
generated with the compiler's -XREFL option. The concordance address field for all items in an
over 64K COMMON block contains two 6-digit octal numbers rather than one. The first
number corresponds to a segment offset; the second number is the word offset.

Arrays in a COMMON block over 64K are treated as if they spanned a segment boundary
regardless of their size. Code normally generated for array references will not work for these
arrays. Programs (and subprograms) referencing these arrays must be compiled with the -BIG
option. (This also forces compilation in 64V mode).

A COMMON block over 64K must be explicitly declared over 64K in every program that
references the COMMON. Otherwise, the compiler will not generate special code for arrays
within that COMMON block.

Dummy argument arrays: If a dummy argument array may become associated with an array
that spans a segment boundary (through a CALL statement or function reference), the compiler
must be made aware of this when the subroutine or function is compiled [see below).

Example:

COMMON IBUF (1000,200)
CALL SUB (IBUF, 1000, 200)

END

FDR3057 6-6 1 March 1980

-

FORTRAN STATEMENTS 6

18

SUBROUTINE SUB (IDUM, N, M)
DIMENSION IDUM (N, M)

END

When subroutine SUB is being compiled, the compiler must be notified that dummy argument
array IDUM becomes associated with an array that spans a segment boundary (IBUF).

Code generated for an array that spans a segment boundary will work whether or not the array
actually spans a segment boundary. There are two methods to notify the compiler that a
dummy argument array may become associated with an array that spans a segment boundary.

1. Within the subroutine or function, dimension the dummy argument array
over 64K words. This method cannot be used when there are dummy
arguments or COMMON dimensions. Example:

SUBROUTINE S [IARRAY)
DIMENSION IARRAY (100000)

2. Compile the subprogram with the -BIG option. All dummy argument arrays
will be treated as arrays spanning segment boundaries. -BIG also forces
compilation in 64V mode. Example:

FTN SUB -BIG

The above discussion related only to dummy argument arrays. A dummy argument variable
may become associated with an element of an over segment boundary array, and the code
normally generated by the compiler will work correctly.

System and Library routines that require arrays as arguments must not be called with arrays
that span segment boundaries, unless these routines are recompiled with the -BIG option. This
includes the matrix manipulation routines in MATHLB.

Restrictions: There are a number of restrictions on over 64K COMMON blocks and arrays
spanning segment boundary. The compiler will issue an error message if any of these
restrictions are violated.

« An array may span segment boundaries, but no array element or variable may cross
a segment boundary. If the first word of a real number is in one segment, the second
word must be in the same segment. For this reason, the compiler must enforce the
following restriction: Any multiword variable or array of multiword elements must
be offset @ multiple of its element length from the start of the COMMON block.

Thus, a double-precision variable or array (regardless of its dimension) must be
offset 0 or 4 or 8 words, etc. from the start of an over 64K COMMON block. This
restriction also applies to items EQUIVALENCEd to elements in an over 64K
COMMON block.

o Items in COMMON blocks over 64K cannot be initialized by a DATA statement. Any
initialization of COMMON hlocks over 64K must be done by assignment statements.
This restriction applies even if the item is in the first segment of an over 64K
COMMON block.
o A segment boundary spanning array must not appear unsubscripted in the list of an
[/O or ENCODE/DECQODE statement. The equivalent functionality can be achieved
by using implied DO Loops.
Implementation notes and programming considerations: The code generated for a subscripted
array reference normally consists of instructions to load an index register with the subscript
followed by an indexed instruction that references the array element. This code sequence
cannot be used for a segment boundary spanning array reference because the index registers

1 May 1981 6-7 FDR3057

6 FORTRAN STATEMENTS

are only 16 bits wide and indexing never affects the segment number. A segment boundary
spanning array subscript is computed using 32-bit integer arithmetic and then added to the
array base address. This resultant address is stored in a temporary location and the array
element is referenced indirectly through the temporary location. Thus, on every reference to an
over segment boundary array, an execution speed and program size penalty is paid relative to a
normal array. For efficiency, all arrays under 64K words should be placed in COMMON blocks
under 64K.

The compiler requires that any COMMON block over 64K be allocated in contiguous segments.
It also requires that the starting address be a multiple of 4, the largest data type size (complex
and double precision floating point).

Calculating array size in words: The size of an array is the product of its dimensions multiplied
by the number of words per element. The number of words per element is determined by the
type of the arrays as follows:

Type Number of Words Per Item
INTEGER*2 1
LOGICAL 1
INTEGER*4 2
REAL (REAL*4) 2
COMPLEX 4
DOUBLE PRECISION (REAL*8) 4

Example: REAL A(1000,44)
Number of Words = 1000 x 44 x 2 = 88000

DIMENSION statement
DIMENSION V1(I1), V2(I2), . . . Vn(In)

Declares the name of the array, the number of subscripts (IJ=]1,]2,... Jn; n= 1 to 7), and the
maximum value for the subscripts. This allocates the maximum storage requirement for the
array. In a subroutine, the subscript(s) in a dimension statement may be a variable, provided
this value is passed to the subroutine from the calling program.

EQUIVALENCE statement
EQUIVALENGE (k11, k12, k13 . . .), (k21, k22, k23 . . .)

Where each k is a variable, subscripted variable or array name. Each element in the list is
assigned the same memory storage by the compiler. An EQUIVALENCE statement equates
single variables to each other, entire arrays to each other, elements of an array to single
variables and vice-versa. If equivalences are established between variables of different modes,
the shorter mode is stored in the first words of the longer mode.

SAVE statement
SAVE V1,V2,...Vn

Where the V's are local variables or array names. Arrays cannot be dimensioned in a SAVE
statement. Any symbol name appearing in a SAVE statement cannot appear in a COMMON
statement or be EQUIVALENCEd to a COMMON element. A labeled COMMON block (not
blank COMMON) may appear in the list if it is enclosed in slashes.

Note

In the current revision, inclusion of a COMMON block name
has no effect. This feature is included to allow compatibility
with the FORTRAN 77 standard.

FDR3057 6-8 1 May 1981

FORTRAN STATEMENTS 6

Variables listed in the SAVE statement are assigned local storage in the linkage frame (static)
rather than the stack frame (dynamic). Thus, the SAVE command has meaning only when the
program is compiled including the DYNM parameter (64V mode only). Symbol names in DATA
statements, SAVE statements or EQUIVALENCEd to names in these statements are stored in
the linkage frame. Only variables in the linkage frame can be initialized. Variables allocated to
the stack frame are not preserved from one subroutine CALL to the next.

If the SAVE statement appears without a list of symbol names then all local storage is allocated
to the linkage frame.

EXTERNAL PROCEDURE STATEMENTS
CALL statement
CALL subroutine [(argument-1, argument-2, . . ., argument-n])

Where subroutine is a subroutine name and the arguments are a list (possibly empty) of the
arguments passed and to be returned. Subroutines may not CALL themselves unless the
program units are all compiled with the DYNM parameter (64V mode on Prime 350 or higher
computers).

EXTERNAL statement
EXTERNAL V1, V2, ...,Vn

Where each v is declared to be an external procedure name. This permits the name of an external
function (such as COS) to be passed as an argument in a subroutine call or function reference.

DATA DEFINITION STATEMENT
DATA statement
DATA k1/d1/,k2,d2/, ... kn/dny

Allows initialization on variables or array element at load time. Each k is a list of variables or
array elements (with constant subscripts) separated by commas; eachd is a corresponding list
of constants of the same data mode as the variables and array elements in the list.

COMPILATION AND RUN-TIME CONTROL STATEMENTS

The following statements provide diagnostic tools for the programmer and are discussed in
more detail in the Debugging section (3) and the Compiler Section (2).

FULL LIST statement

Causes a listing of subsequent source code with a symbolic listing. Overridden by compiler
parameters.

INSERT statement
See $INSERT.

LIST statement

Causes a listing of subsequent source code with no symbolic listing. Overridden by compiler
parameters.

NO LIST statement

Causes a cessation of subsequent source code listing and of symbolic listing. Overridden by
compiler parameters. ‘

1 May 1981 6-9 FDR3057

6 FORTRAN STATEMENTS

FULL LIST, LIST, and NO LIST may be used anywhere in the source program.

Item TRACE statement
TRACE V1, V2,...Vn

Each V is a variable or array name. Prints the value of the variable at each point in the program
where the variable is modified. Printout of a variable may be altered by another TRACE
command with that variable name. Trace coding is inserted into the program at compilation;
TRACE takes effect in source program physical order, not logical execution order.

Area TRACE statement
TRACE n

Causes values of the variables used in statement labeln to be printed out during execution of the
code between the area TRACE statement and statement label n.

Note

Do not place an area trace statement in the range of another area

statement, unless both refer to the same statement label.
TRACE is overridden by the compiler global trace option -TRACE, but not by the -NOTRACE
option (see Section 2). It is possible to have the TRACE output written into a file instead of at the
user terminal. Prior to executing the program, switch the output to a file by the PRIMOS-level

command.
COMO filename

where filename is the file into which terminal outpult is to be wrilten. After the program has
halted, output to the file is stopped and the file closed by:

COMO -END
The form of the command given here does not turn off output to the terminal. A complete
description of this command is given in the Prime User's Guide.
$INSERT statement

$INSERT insert-file

Insert into the program, at compilation time, the file whose pathname is inseri-file. The
$INSERT command should not be nested; do not include a $INSERT command in a file which
will be inserted into a program by a $INSERT command.

$INSERT is used for:

o Insertion of COMMON specificalion into programs.

« Commonly used one-line functions.

s Data initialization stalements.

o Parameter definitions, especially for the file management system, applications
library, MIDAS, etc.

ASSIGNMENT STATEMENTS
Assign a value to a variable

1. arithmetic A=B**2
2. logical (P, Q, R are logical variables) P=Q.OR.R, P=A.GT.B

Mixed mode

Data of different modes may be combined with one and another with the following restrictions:

FDR3057 6-10 1 May 1981

18

—

FORTRAN STATEMENTS 6

Logical data should not be combined with any other mode.

No operator can combine Double Precision and Complex data.

Subscripts and Control statement indexes must be integers (short or long].
Arguments of functions and subroutines must be of the mode expected by the called
subprogram.

P o

It is convenient to think of the arithmetic data modes as forming a hierarchy:

¢ COMPLEX or DOUBLE PRECISION
e REAL

¢« LONG INTEGER

¢« SHORT INTEGER

Whenever two data of differing modes are concatenated by an operator, the resulting mode is
that of the higher in the list, as in:

REAL + SHORT INTEGER is a REAL
CAUTION

If LONG INTEGERS are converted to REALS, there may be a
loss of precision. The rules for data mode conversion via
assignments (i.e., A=B) are given in Table 6-1. Conversion of
long (short) to short (long) integers by assignment is not
recommended as good practice; use the INTL and INTS
functions instead.

CONTROL STATEMENTS
ASSIGN statement
ASSIGNk TO i

Where k is a statement label and i is an integer variable. An ASSIGN statement must be
executed prior to an assigned GO TO.

CONTINUE statement
[statement-number] CONTINUE

Transfers control to the next executable statement. With the optional statement-number it is
usually used to indicate the end of the range of a DO loop.

DO statement
DO ni=ml, m2 [.m3]

Executes statements until and including the statement with label n; m1, m2, m3 are positive
integers (constants, parameters, or variables only — no expression or array elements) with
m2=m1, iis an integer variable which assumes the values m1, m1+m3, m1+2*ma3, etc. m1 is the
initial value, m2 the limit value, and m3 the increment. If m3 is not specified, the increment is
defaulted to 1.

DO loops may be nested; there is no syntactical limit to the nesting of DO loops.

[t is an undesirable programming lechnique to have the index variable appear as the initial,
limit, or increment values in the DO statement.

After the last execution of the loop, control passes to the next executable statement following
the terminal statement of the DO loop. This is called a normal exit.

CAUTION
ANSI standard FORTRAN specifies that the value of the index

1 May 1981 6-11 FDR3057

6 FORTRAN STATEMENTS

variable is undefined after a normal exit from a DO loop. The
value of the index variable at this point is completely dependent
upon the specific compiler and how it performs its limit tests;
hence, the terminal value of the index variable will differ at
different installations. It is extremely bad programming to use
the terminal value of this variable as implicitly set. If the user
needs the value of this variable after a normal exit, its value
should be explicitly set by an assignment statement.

Note

The DO loop in Prime FORTRAN is a one-trip DO loop. That is,
the loop commands will be executed at least once even if the
initial value is not less than the limit value. If it is desired to
skip the loop under certain conditions, an IF statement
preceding the DO statement should be used. Control should be
transferred to a statement subsequent to the terminal statement
of the DO loop, not to the terminal statement

END statement

The final statement of program, subroutine, ar external function. Tells the compiler that it has
reached the end of the source program.

END

Unconditional GO TO statement
GO TOk
Transfers control to statement labelled k.
Computed GO TO statement
GO TO (k1, k2, .. .kn), i
Transfers control to statement labelled kj when integer expression i = j. If the value of i lies
outside the range 1 to n, then control passes to the next executable statement after the computed
GO TO.
Assigned GO TO statement
GO TO i[,(k1, k2 .. .,kn]]

Transfers control to statement labelled i. Prior to executing the assigned GO TQO, a value must
be assigned to i using the ASSIGN command.

There is no syntactical limit to the number of labels in a computed or assigned GO TO.

Arithmetic IF statement
IF (e) k1, k2, k3

Where € is an arithmetic expression with an integer, real, or double precision value. If e<0
(negative) control is transferred to statement labelled k1, if e =0 (exactly), control is transferred
to statement labelled k2, and if €0 (positive), control is transferred to statement labelled k3.

Logical IF statement

IF (e) statement

FDR3057 6-12 1 May 1981

FORTRAN STATEMENTS 6

Where e is a logical expression which may be .TRUE. or .FALSE.: statement is any valid
executable statement except a DO or a logical IF statement. If e is true, the statement is
executed; if e is false, control passes to the next executable statement.

Note

An arithmetic IF may be the statement in a logical IF but this is

18 not recommended as a good programming practice. If the state-
ment is an assignment statement, then the = must be on the first
line — not on a continuation line.

Table 6-1. Data Modes Rules for Assignment Statements (A=B)
To A (left-hand-side)
FROM B Integer, Integer, Double
(right-hand- Short Long Real Precision Complex
side
Integer, Assign Sign- Float DP Float Float and
Short Extend and and Assign lo
and Assign Assign Real Parl
Assign (Imaginary
Part is Zero)
Integer, Truneate Float DP Floal Float and
Long and Assign and Real and Assign to
Assign Assign Assign Real Part
(Imaginary
Part is Zero)
Real Fix Fix DP Evalu- Assign lo
and and Assign ale and Real Parl
Assign Assign Assign {Imaginary
Part is Zero)
Double Fix Fix DP Evaluale NOT
Precision and and and Real Assign ALLOWED
Assign Assign Assign
Complex Fix Fix Assign NOT
and and Real ALLOWED Assign
Assign Assign Part
Real Parl Real Part
Assign: Transmit resulting value without change.
Real Assign: Transmit as much precision of the most significant part of the
resulting value as Real datum can obtain.
DP Evaluate: Evaluate, then DP float.
Float: Transform value to Real datum form.
18 DP Float: Transform value to Double Precision form.
Fix: Truncate fractional part and transform integral part to integer.
Truncate: Take 16 low-order bits and store in short integer datum.
Sign-Extend: Pad 16 high-order bits with 0's or 1's if short integer is positive or
negative, respectively.

PAUSE statement
PAUSE [n]

Where n is an optional decimal number up to five digits. Halts the program, transfers control to
subroutine FSHT and prints ****PA n (R-identity) or ****PAUSE n (V-identity) at the

1 May 1981 6-13 FDR3057

6 FORTRAN STATEMENTS

keyboard. The value of n is printed in octal representation. Keying in START continues
operation of the program at the next executable statement following PAUSE.

RETURN statement
RETURN

Returns to the main program from a subroutine or external function. It must be the last logical
statement in the subroutine or external function.

STOP statement
STOP [n]
Where n is an optional decimal number of up to five digits. Halts the program, transfers control

to subroutine FHT, prints ****ST n (R-identity) or ****STQOP n (V-idenlity) at the keyboard
and returns control to the PRIMOS level. The value of n is printed in octal representation.

INPUT/OUTPUT (I/0) STATEMENTS
See Table 6-2 for list of FORTRAN device units.

Direct access READ and WRITE statements

The FORTRAN compiler and run-time library support direct access READ and WRITE
statements. READ and WRITE statements may contain a record number to randomly access file
records. With sequential access, record n-1 must be read or written before record n. The syntax
implemented is compatible with both IBM FORTRAN and new ANSI standard FORTRAN.

Usage: Special aclion is required by the user when creating and opening files to be used for
direct access 1/0. Files used for direct access IO should be DAM files. (Direct access [/0
stalements may be used with SAM files but execution time will be longer.) If the file is
formatled, the ATTDEV subroutine must be called so that fixed length records are written. (The
ATTDEV subroutine is also used to set the record length.) DAM files are created by opening a
new file using the KNDAM subkey in either a SRCH$$ or TSRC$$ call. (See Reference Guide,
PRIMOS Subroutines for delails.)

The ATTDEV subroutine may be used to alter the mapping of FORTRAN units to file system
units or to change the record size from the default of 60 words (120 characters). The records of a
direct access [ormatled file must be lixed length. This is done by setling the second argumentl of
ATTDEV to 8. The records of an unformatted file are fixed length by defaull. If the record length
of any file exceeds 66 words (132 characters), a COMMON declaration for F$IOBF must be
included. The size of F$IOBF must be as large as the largest record size. (See Changing record
size) below for details.)

A program that creates a direcl access file cannol wrile record n before record n-1 has been
written. A separate program should be used. Once the file has been crealed, it can be read or
written in random order.

After a direct access 1/0 stalement, the file is positioned at the record following the one just
transferred. If the direct access file is then accessed sequentially, using other forms of the
READ or WRITE statement, it is nol necessary to include the record number. This enhances
performance by eliminating the positioning call.

Formatted files used for direct access I/O may be examined by the editor. They must not be
modified using the editor. The editor compresses records, giving them variable lengths; files
used for direct access IO musl have fixed length records.

IBM compatibility: The READ and WRITE stalements are identical to IBM FORTRAN. The
DEFINE FILE and FIND statements of IBM FORTRAN are not supported. The record size in the
DEFINE FILE statement must appear in the ATTDEV call. The record size in the DEFINE FILE

FDR3057 6-14 1 May 1981

,.-n:-\ :

FORTRAN STATEMENTS 6

statement is measured in bytes of 32-bit words rather than 16-bit words required by ATTDEV.
If the U specifier is used in the DEFINE FILE statement, the record size of the DEFINE FILE 18
statement should be doubled for the ATTDEV call; otherwise the record size should be halved.

The ATTDEV call requires INTEGER*2 arguments. I the INTL option is used during
compilation, constants used as arguments in the ATTDEV calls must be converted to
INTEGER*2 by the INTS funclion (e.g., INTS (8)).

There is no equivalent of the DEFINE FILE associated variable in Prime's implementation of
direct access files. In IBM FORTRAN, the value of the associated variable is the number of the
record that follows the record just transferred.

Changing record size: The default formatlted record lenglh is 60 words (120 characlers). A
larger record size can be sel with the ATTDEV subroutine. This subroutine has two functions:

¢ Change record size associated with a FORTRAN logical I/0 unit number.
o Change the correspondence between the [/O unit number and the physical device.

The syntax is:

—
CALL ATTDEV (logical-unit,device,unit,record-size)
logical-unit The FORTRAN 1I/0 unit number. This is the number used in READ
and WRITE statements (1=terminal, 2=paper tape punch/reader,
ete. See table 6-2).
device The position of the physical device in the device-type tables
(CONIOC). The acceptable values are;
- 1 User terminal
2 Paper tape punch/reader
7 Disk file system [Compressed ASCII)
8 Disk file system (Uncompressed ASCII)
unit The unit number for multi-unit devices (e.g., magnetic tape drive 0-
3). If device is the disk file system (7 or 8) then unit is the file unit
number (1-16)
record-size The maximum record size in INTEGER*2 words [or the logical-
record. Each word will store 2 characters.
~ If the record size is to exceed 128 words (256 characters). the buffer used by internal FORTRAN
subroutines must be increased. This is done by loading user-created F$IOBF COMMON before
loading the FORTRAN library. Insert this statement in the user program:
COMMON/F$IOBF/array-name (size)
array-name An arbitrary name.
size The desired buffer size in INTEGER*2 words. Each word stores 2
characters.
CAUTION
[Uis not possible Lo increase the bufler size by loadine a user-
created FSIOBE if the shared libraries are used. The bulfer size
for the shared libraries is 6K words.
PRINT statement

PRINT f [list]

Prints the list of elements at the user terminal according to the formal specified in statement f.
Equivalent to WRITE (1,f) [list].

1 May 1981 6-15 FDR3057

6 FORTRAN STATEMENTS

READ statements

For all READ statements: if END=a is included, then control is transferred to statement number
a if an end-of-file condition is encountered during the read. If ERR=b is included then control is
transferred to statement number b if a device or format error is encountered during the READ
statement.

list A list of variables and array names (separated by commas) into
which data are read.

Table 6-2. Devices and Their Default FORTRAN Unit Numbers
FORTRAN Number Device
{(Unit No.)

1 User terminal
2 Paper tape reader or punch N
3 MPC card reader
4 Serial line printer
5 Funit 1
6 Funit 2
7 Funit 3
8 Funit 4
9 Funit 5
10 Funit 6
11 Funit 7 e
12 Funit 8 '
13 Funit 9
14 Funit 10
15 Funit 11
16 Funit 12
17 Funit 13
18 Funit 14
19 Funit 15
20 Funit 16
21 9-track magnetic tape unit 0 .
22 9-track magnelic tape unit 1 \
23 9-track magnetic tape unit 2
24 9-track magnetic tape unit 3
25 7-track magnetic lape unit 0
26 7-track magnetic tape unit 1
27 7-track magnelic lape unit 2
28 7-track magnetic tape unit 3

18] 29-139 Funit 17-127
140 Printer unit 0

19l 141 Printer unit 1

Formatted READ statement -

READ (u. f, [. END = a] [, ERR = b]) list

Causes data on FORTRAN unit u to be read into the variables/array names specification
according to the format of stalement £ If no list is given, one record is read and ignored.

FDR3057 6-16 1 July 1982

FORTRAN STATEMENTS 6

CAUTION

Hollerith formats should be avoided in FORMAT statements
associated with READ statements. The A format should be
used for strings.

Direct-access READ statements

READ (u'r,f,ERR=b) list IBM format
READ (u,f,REC=r,ERR=b) list ANSI format
u A long or short integer constant or variable whose value is the

FORTRAN unit number.

Note

The apostrophe (') is required in the IBM form of the direct
access READ and WRITE statements.

r The long or short integer expression whose value is the record

number to be accessed.

The statement number of the format specifier (optional).

b The statement number to which control is transferred if a device or
format error is encountered during transfer (optional).

-

The END= specifier is not allowed in the direct access write statement. This restriction is
consistent with both IBM FORTRAN and the new ANSI standard FORTRAN.

Binary READ statement
READ (u, [, END = a] [, ERR = b]) list

Causes data on FORTRAN unit u to be read into the variables/array names specification list.
Enough records are read to satisfy all the list items. If mare items are on the record than are
required by the list, the excess items are ignored. If no list is given, one record is read and
ignored.

CAUTION

If the list requires more data than are in the current record, then
the next record(s) are read until the list is satisfied. Thisis not a
clean programming technigue and should be avoided.

List-directed READ statement
READ (u,* [, END = a] [, ERR = b]) list

List-directed 17O frees the programmer from including format statements for READs from free-
format input devices such as the user terminal. The input data is converted according to the data
type of items in the I/0 list. Additionally, this feature provides a method to indicate in the input
data that an item in the 17O list is to remain unchanged by the READ statement,

Delimiters: Values in list-directed input are separated by a blank, comma, or slash. A slash or
comma may be preceded and followed by any number of blanks. Anend of recordis treated as a
blank. A slash terminates a READ and leaves the values of the remaining items in the [/O list
unchanged. Two adjacent commas with nointervening characters except blanks will leave the
corresponding item in the I/0 list unchanged. A list-directed READ will read any number of
records until a slash is encountered or until all items on the 1/0 list have been satisfied.

1 May 1981 6-17 FDR3057

6 FORTRAN STATEMENTS

Example 1:

Source line: READ(1,*)A,B,C,

Input Data: 151,,2E2

Result: A+ 151. B is unchanged. C+2.E2
Example 2:

Source line: READ(1,*)L,],K

Input Data: 5-3/

Result: I= 5]= -3 K is unchanged.

Numerical input: If an item in the /O list is a long or short integer variable or array element, the
corresponding input field must contain a string of decimal digits optionally preceded by a+or -
sign, as in:

-357 100514 +12387

If a real or double precision item is in the I/O list, the corresponding input field must contain a
string of decimal digits with an optionally embedded decimal point. An exponent field may
follow in either E or D format, as in:

51 -27.68 7.65E-14 863D2
503 +265,

The input field, corresponding to a complex item must contain two real numbers (as described
above), separated by a comma and enclosed in parentheses, as in

(1E2,~2.) (5.67E-86,8.09)

Character string input: A variable or array of any type can be set equal to a character string
using list-directed READ. A character string must be enclosed in single quotation marks in the
input data, Within a character string, a quotation mark is represented by two consecutive
quotation marks. A character siring, regardless of length, matches a single item in the 1/0 list
whether it is a variable, array element, or whole array (represented by including the
unsubscripted array name in the /O list). If the character string is shorter than the list item, the
rightmost characters of the list item are blank filled. If the character string is longer than the list
item, the rightmost characters of the character string are ignored. Characters are packed two
per word, as in:

Example 1:
Source: INTEGER*2 IBUF(2)
READ (1) IBUF
Input Data: "ABC’
Result: IBUF(1)=AB IBUF(2)=C
Example 2:
Source: READ(1,*) (IBUF(I), 1=1,2),]
Input Data: 'GHIJ', 5/
Result: IBUF(1)='GH' IBUF(2)=5 | is unchanged.

Note

If the 1/0 list has been satisfied, a slash in the input data is
optional. A carriage return is the end of a record on a READ
from a user terminal and is treated as a blank on list-directed
READs.

WRITE statementis

For all WRITE statements, if ERR=b is present, control is transferred to statement b if a device

FDR3057 6-18 1 May 1981

18

18

FORTRAN STATEMENTS 06

error is encountered during the WRITE statement.
list A list of variables and array names (separated by commas) from
which data are printed.
Formatted WRITE statement
WRITE (uf [,ERR=b]) list
Causes data in the list to be written out on FORTRAN unit U according to the format state-

ment f,

Direct-access WRITE statement

WRITE(u'r.f,.ERR=Db) list IBM format
WRITE(u.f,REC=r,ERR=b) list ANSI format
u A long or short integer constant or variable whose value is the

FORTRAN unit number.

Note

The apostrophe (') is required in the IBM form of the direct
access WRITE statements.

-

The long or short integer expression whose value is the record
number to be accessed.

The statement number of the format specifier (optional).

b The statement number to which control is transferred if a device or
format error is encountered during transfer (optional).

]

The END= specifier is not allowed in the direct access writestatement. This restriction is
consistent with both IBM FORTRAN and the new ANSI standard FORTRAN.
Binary WRITE statement

WRITE (u [LERR=b]) list

All words in the list are written into a record in binary format. If there are insufficient data to
fill the record, it is padded out with zeroes; il there are more items than a record can hold,
multiple records are written automatically. If necessary, the last record is padded with zeroes.

Both READ and WRITE statements allow implied DO loops for transferred data between
arrays and device. In this case, the list could have a form such as:

(NAME1 (INDEX1), INDEX1 = 1, 5, 2)
or

(NAME1 (INDEX1), INDEX2 (3, INDEX1), INDEX1 = 1, 5)
or

((NAME1 (INDEX1, INDEX2), INDEX 1 = 1, m) INDEX2 = 1, n, p)

where m, n, and p are constant positive integers (constants, parameters, or variables).

CODING STATEMENTS

C number of ASCII characters to be transferred

f format statement label
a array name
list [/0 list of elements (same as in a READ or WRITE statement)

1 May 1981 6-19 FDR3057

6 FORTRAN STATEMENTS

Formatted DECODE statement
DECODE (cf,a[, ERR=sn]) list

Converts the first ¢ characters in the array a from ASCII data into the 1/0 list elements accord-
ing to the specified format f. If the optional error branch is inserted, a FORMAT/DATA
mismatch will cause a transfer to the statement labelled sn.

List-directed DECODE statement
DECODE (c, *, a [, ERR=3sn]) list

Allows the user to input/decode data from free-format input devices such as the user terminal.
The requirements on input and delimiters are the same as for the list-directed READ statement
[see READ).

ENCODE statement
ENCODE (c,f,a,) list

Converts the elements of the I/O list into ASCII data according to format f and stores the first ¢
characters of the resultant string into array a.

FORMAT STATEMENTS
FORMAT statement
sn FORMAT (dF1 d¥2 dF3 ... Fn)

sn Mandatory statement number.
I'1, elc. A format field description.
d A format delimiter (, or /). The first d may be null.

The right parenthesis marks the end of a record.
Delimiters:
/ (slash) proceed to next record
, (comma) remain within current record
The maximum record length is determined by the lype of device or storage unit.
Format field descriptor: Tables 6-3 and 6-4 summarize the field descriptors available in Prime
FORTRAN, where n (posilive integer constant) is the number of times the basic field descriptor
is to be replaced, w (positive integer constant) is the total width of the field in columns (or
characters).
d (non-negative integer constant) is the number of digits to the right of the decimal point. (See
format G output for an exceplion to this.)
Repetition: All field descriptors except those marked by an * in Tables 6-3 and 6-4 (X,H,B) can
be assigned a repeat count causing the descriptor to be used that number of times in succession.
FORMAT (3E10.5) and FORMAT (E10.5, E10.5, E10.5) are equivalenl.
Groups of descriptors (including X,H,B,) may be enclosed in parentheses and the entire group
assigned a repeat count.
FORMAT (2(3G11.6,5X)) and FORMAT (3G11.6,5X,3G11.6,5X) are equivalent.
Repeat groups have a maximum nesting of ten levels.
FORMAT (3(2(10F.7,3X),12,5X))

is permissible.

FDR3057 6-20 1 May 1981

FORTRAN STATEMENTS 6

Rescanning format lines: I the format list is exhausted before the input/output list, the format
list is repeated. Repelition starts at the opening (left) parenthesis that matches the last closing
(right) parenthesis in the format list. The parentheses around the format list itself are used only
if there are no other parentheses. Any repeat count preceding the rescanned format is in effect.

Output The current record is padded with blanks and a new record is
started.

Input The remainder of the current record is skipped and the device
advanced to the beginning of the next record

Table 6-3. Results of Formats in Output Statements
FORMAT OUTPUT

snFw.d Prints Real or Double Precision Numbers as mixed output (no
exponent] with as many significant figures as the data type
allows. w is the total field width and must allow one position for a
decimal point and one for a minus sign (if negative numbers are to
be printed). d is the number of decimal places (right of decimal
point). Numbers are right justified. Leading zeroes are inserted for
numbers less than 1; trailing zeroes are used to fill the decimal
places il necessary. Only minus signs are printed. If total field
width is too small, the number is truncated and a $ printed if
positive, a = if negative. If the decimal section is too small, the

Floating number is rounded.

2 snEw.d Prints Real or Double Precision numbers as a number with a
magnitude between 0.1 and 0.9999999 times an exponent. The
field width w must allow for a minus sign (if oneis to be printed), a
decimal point, and three or four positions for the exponent rep-
resentation (see below). The numberd sets the number of places to
the right of the decimal point — the maximum is seven. The
representation with magnitude less than 1 may be overridden
using scale factors.

18

Exponent Value Exponent Representation Width
wWXyz= -9999 to -1000 =wxy (fourth digit lost) 4
- Xyz= -999 to -100 -XyZ (no E)
yz= -99 to -10 E-yz
7= -9to 9 E-zor Ez
yz= 10 to 99 E yz
Xyz= 100 to 999 +xyz [(no E)
Exponential wXyz= 1000 to 9999 $wxy (fourth digit lost) 4

e b O s

snGw.d Prints Real or Double Precision numbers in F or E format
according to the magnilude of the number and the decimal place
specifier - d.
Magnitude Effective Format
0.1 to 1.0 F(w-4) .d,4X
1.0 to 10.0 F(w-4).(d-1), 4X

10%*(d-2) to 10**(d-1) F(w-4) .1, 4X
10**(d-1) to 10**d F(w-4) .0, 4X
Outside Range Ew.d

General Truncation is performed as for E and F formatls.

1 May 1981 6-21 FDR3057

6 FORTRAN STATEMENTS

18

snDw.d Prints Double-Precision Numbers only in an exponential format
similar to the E formal except that the letter D is used instead of E

Double Precision and that d has a maximum value of 14.

wX Writes w spaces into the output record (negative w backspaces for

Space replacing).*

Tw Positions output pointer to column w in the output record. Back
tabbing is permitted.

Tab Example: (T1,40A2,T15,F9.3)

wHclc2 . . .cw Prints the string cl1c2 ... cw.*

Hollerith 1. Does not require an item in the oulput list
2. Need not be followed by a delimiter.

nAw Prints Integer, Real, Complex, or Double Precision variables as
ASCII characters. w is number of characters per variable or array

ASCII name. Qutput is right justified and padded with spaces.

nLw Prints logical variables: +1 prints as T, 0 prints as F. Qutput is right

Logical justified and padded with spaces. If w<1 there is no output.

nlw Prints contents of integer (short or long) variables or array names

as a string of integers (no decimal points). If string is longer than

field width w then number is right truncated and preceded by a $

if positive and = if negative. Minus signs are printed but not plus
Integer signs.

B'string’ Prints templated numerical output for business purposes.
Features include: Fixed and floating signs, trailing signs, plus sign
suppression, trailing minus change to ‘CR’, fixed and floating $,
field filling, leading zero suppression, insertion of commas.
Length of string determines field width; if number is greater than
field width then ouput is printed as string of asterisks. See text for

Business details on this format.*

*No repeat count is allowed with the format specifier itself, but the format specifier may be
included in a group repetition.

Formats as variables: [t is possible to enter formal statements at run time by any method of
building this format as text string and loading it into an array. The array can later be referenced
in lieu of a FORMAT statement, by the READ or WRITE stalements that handle the data.
Arrays to be used for this purpose must be assigned as integer type and must be dimensioned to
accommodate the format descriplion, al two characters per word. The format description is
loaded into the array by a READ statement that references a tlype A format statement:

DIMENSION FORM (6), TEXT (80)
INTEGER FORM
READ (1,20) FORM
20 FORMAT (6A2)
WRITE (1,FORM) (ARG (I) , I=1,3)

These statements provide for an output format specification such as (3(F7.3,17)) to be entered at
run time. Note that the specification must include opening and closing parentheses but not the
word FORMAT.

B-Format: The B-Format is used in printing business reports where it is desirable to [illnumber
fields to prevent unauthorized modifications (as on checks), suppress leading zeroes and plus

FDR3057 6-22 1 May 1981

FORTRAN STATEMENTS b6

signs, print trailing minus signs (accounting convention) and convert minus signs to CR (for
indicating credil entries on bills). The form of the B-field specifiers is:

B'string’
The length of the string determines the field within. If the width is too small for the number,

then the output will be a string of asterisks filling the field. Legal characters for the string are:

+-%,*Z#.CR

Table 6-4. Results of Formats in Input Statements

FORMAT INPUT
snFw.d External numbers may be represented as integers, mixed in-
Floating tegers, or scaled numbers (with exponents). Leading blanks are
snEw.d treated as zeroes; imbedded and trailing blanks are ignored. The
implied decimal point is placed to the left of the first d digits
Exponential counting from the right (if there is no decimal point in the
snGw.d external number). A decimal point in the externmal number
General overrides the positional decimal point. The decimal exponent (D
snDw.d or E) and the exponent value are a unit; both must be included or
Double-Precision omitted. All numbers are assumed positive unless a minus sign is
present.

All numbers are initially converted internally to double-precision
numbers; if entered in EF, or G format, they are truncated.

wX Skips w columns in the input data [negative w backspaces to

Space reload record).*

Tw Tabs to column w in the input record.

Tab

wHc1c2 ... cw NOT USED*

Hollerith

nAw Stores ASCII characters in Integer, Real, Complex, or Double-
Precision variables. If input is greater than storage available in

ASCII variables, only the leftmost characters are stored.

nLw Stores true/false in internal representation based upon lirst non-

space characters in the input data (all others ignored). IT T it is set
to+1;if Fitis sel to 0; il anythingelseitis setto 0 and theerror flag
Logical is set (use OVERFL to look at error flag).

nlw Stores external numbers in integers. If no sign is present, a plus
sign is assumed. A sign or blank is counted as one character
position. No decimal points are allowed. If there are more
numbers than the field width, w, only the left-most w characters

Integer are stored.
B’string’ NOT USED*
Business

*No repeat count is allowed with the format specifier itself, but the format specifier may be
included in a group repetition.

1 March 1980 6-23 FDR3057

6 FORTRAN STATEMENTS

Plus (+);

If only the first character is +, then the sign of the number (+ or -) is printed the leftmost
portion of the field (Fixed sign). If the string begins with more than one + sign, then
these will be replaced by printing characters and the sign of the number [+ or -) will be
printed in the field position immediately to the left of the [irst printing character of the
number (floating sign). If the rightmost character of the string is +, then the sign of the
number (+ or -) will be printed in that field position following the number (Trailing
sign).

Minus (-):

Behaves the same as a plus sign except that a space (blank) is printed instead of a +if the
number is positive (Plus sign suppression).

Dollar sign ($):

A dollar sign ($) may at most be preceded in the string by an optional fixed sign. A
single dollar sign will cause a § to be printed in the corresponding position in the output
field (Fixed dollar).

Multiple dollar signs will be replaced by printing characters in the number and a single
$ will be printed in the position immediately to the left of the leftmost printing character
of the number (Floating dollar).

Asterisk (*):

Asterisks may be preceded only by an optional fixed sign and/or a fixed dollar.
Asterisks in positions used by digits of the number will be replaced by those digits; the
remainder will be printed at asterisks (Field filling).

Zed (Z):

If the digit corresponding to a Z in the output number is a leading zero, a space (blank)
will be printed in that position; otherwise the digit in the number will be printed
(Leading-zero suppression).

Number sign (#):

#'s indicate digit positions not subject to leading-zero suppression; the digit in the
number will be printed in its corresponding portion whether zero or not (Zero non-
suppression).

Decimal point (.):

Indicates the position of the decimal point in the output number. Only #'s and either
trailing signs or credit (CR) may follow the decimal point.

Comma (,):

Commas may be placed after any leading character, but before the decimal points. If a
significant character of the number (not a sign or dollar) precedes the comma, a, will be
printed in that position. If not preceded by a significant character, a space will be
printed in this position unless the comma is in an asterisk field; then an * will be printed
in that position.

Credit (CR):

The characters CR may only be used as the last two (rightmost) of the string. If the
number is positive, 2 spaces will be printed following it; if negative, the letters CR will
be printed.

See Table 6-5 for examples of B-Format usage.

FDR3057 6-24 1 March 1980

FORTRAN STATEMENTS 6

Scale factors (D,E,F, and G Formats): a scale factor designator for use with the F.E,G, and D
descriptors causes a multiplication by a power of 10. The form is:

nP (represented as s in Tables 6-3 and 6-4)

Where n, the scale factor, is an integer constant with an optional minus sign. Once a scale factor
has been specified, it applies to all subsequent FE,G, and D field descriptors, until another scale
factor is encountered. If n=0, an existing scale factor is removed. The scale factor has no effect
on type LAH,X,L, or B descriptors.

E and D output scale factor: Before output conversion, the fractional part of the internal number
is multipled by 10**n and the exponent is decreased by n.

F output scale factor: The internal number is multiplied by 10**n.

G output scale factor: The scale factor has an effect only if the internal number is in a range that
uses effective E conversion for output. In this case, the effect of the scale factoris the sameasin
the corresponding E conversion.

D,EF,G, input scale factor: The internal value is formed by dividing the external number by
10**n. However, if the external number contains a D or E exponent, the scale factor has no
effect.

Table 6-5. Examples of B-Format Usage
Number Format Output Field
123 B'FIHEE" @123
12345 Bk i
@ B'iak" ulalaly)
123 B'Zzzz" 123
1234 B'z222z2" 1234
@ B'22Z2°
0] B'ZZZ#"' @
1.835 B'#.HE' 1.24
g B'h. 4" A.00
1234.56 B'22Z,222 ,ZZ#. %%’ 1,234,56
123456.78 B'Z22Z,22Z,ZZ4. 41" 123,456.78
0 B'22Z,22Z,ZZ k. %" .00
2 Bk HIB2
-2 B'+id! -002
2 B'-ZZ#' 2
-2 B'-ZZ#' - 2
234 B'ZZ2Z2Z2+' 234+
-234 B'ZZZZZ+"' 234~
234 B'ZZ2ZZZ-' 234
-234 B'ZzZzZZzZ-' 234~
12345 B'2Z2Z ,ZZ#CR' 12,345
-12345 B'Z2ZZ.ZZ#CR' 12,345CR
123 Byl i +123.00
-123 B++,++i. kb -123.00
98 B'SZZZZZZ}' S 98
98 B'$SSSSSSH! $98
156789 BISHdk Kk kkf jl' S¥kk*156,789,00

1 May 1981 6-25 FDR3057

6 FORTRAN STATEMENTS

Formatted printer control: The firslt character of each ASCII output record controls the
number of vertical spaces to be inserted before printing begins on the line printer.

First Character Effect

Space One line
0 Two lines
1 Form feed — first line of next page

(effective only on devices with
mechanized form feed)
e No advance — prinl over previous
line (line printer only)
- Three Lines
Other One line

In all cases the control character is nol printed.

DEVICE CONTROL STATEMENTS

For physical positioning of sequential access devices.

BACKSPACE statement
BACKSPACE u

Repositions FORTRAN unit u so that the preceding record is now the next record. If the unit is
at its initial point, this command has no effect. BACKSPACE also supports disk files.

ENDFILE statement
ENDFILE u

Writes an end-of-file mark on FORTRAN unit u indicating the end of a sequential file for
magnetic tape. Closes a disk file on FORTRAN unit u.

REWIND statement
REWIND u

Repositions FORTRAN unit u to its initial point. Does not close or truncate disk file.

FUNCTION CALLS

Functions are called by means of assignment statements in which the right-hand side is an
expression in the form:

name [argument-1,argument-2, . . . argument-n)

Where nameis the name of the function called (COS,SIN, etc.) and argumentis a non-empty list
of arguments to the function separated by commas. The data modes of the arguments must be
the same as the data modes in the definition of the function. There is no syntactical limit to the
number of arguments.

FDR3057 6-26 1 May 1981

18

FORTRAN STATEMENTS 6

SUBROUTINE CALLS
Subroutines are called from a program by the statement:
Call name [(argument-1,argument-2, . . . argument-n)]

name is the symbolic name assigned by the SUBROUTINE statement beginning the subroutine
subprogram. The argument is a list of arguments, some of which are passed to the subroutine by
the calling program, and the remainder are dummy arguments whose values are calculated by
the subroutine and returned to the main program. The arguments in the main program must
agree in number, order, and mode with the arguments used in the subroutine subprogram.
There is no syntactical limit to the number of arguments.

CAUTION

Do not place constants in the argument list of a subroutine or
function where a value is to be returned to the calling program.
This will cause the constant to be allered and produce un-
desirable results.

1 May 1981 6-27 FDR3057

FORTRAN function

and subroutine structure

o

FUNCTIONS

There are four types of functions; all are called in the same manner (see Section 6).

Prime FORTRAN library functions

These library subprograms (see PRIMOS Subroutine Reference Guide and Section 8) which are
called automatically by the compiler as required and appended to the main program during
loading.

Prime extended intrinsic functions

These are a collection of functions designed lo increase the efficiency of Prime FORTRAN in
logical processing of integers. They are automatically inserted in the program by the compiler
as required.

User-defined function subprograms

FUNCTION subprograms can be created by the user and compiled separately. This permits
them to be used in the same way as library functions.

FUNCTION subprograms must be prepared as separately compiled subprograms that produce
a single result, in the following format:

mode FUNCTION name (argument-1, argument-2,. . .argument-n)

(Any number of FORTRAN statements which perform the required calculations, using
the supplied arguments as values.)

name = Final calculation

RETURN

FUNCTION statement: The FUNCTION statement, which must be the first stalement of a
FUNCTION subprogram, assigns the name of the function and identifies the dummy argu-
ments. In the preceding example, name is a symbolic name assigned to identify the function,
and each argument is &« dummy argument. There is no synlactical limit to the number of argu-
ments. The function name must conform to the normal rules for all symbolic names with]‘(fgdrd
to number of characters, etc. Implicil result mode typing occurs according to the first letter of
the name. Implicit mode typing can be overridden by preceding the word FUNCTION with one
of the mode specifications. The function name must differ from any variables used in the func-
tion subprogram or in any main program which references the function.

1 March 1980 7-1 FDR3057

7 FORTRAN FUNCTION AND SUBROUTINE STRUCTURE

Body of subpregram: The body of the function subprogram can consist of any legal FORTRAN
slatements except SUBROUTINE, BLOCK DATA, or other FUNCTION statements. The state-
ments that evaluate the function use constants, parameters, variables, and expressions in the
normal way. The program must produce a single resull for a given set of argument values. The
subprogram must equate the assigned symbolic function name to the resull, by using name on
the left side of an assignment statement. It is the funclion name itself, used as a variable, that
returns the result to the main program.

RETURN statement: The RETURN statement consists of a single word RETURN. It terminates
the subprogram and returns control to the main program. The RETURN statement mus! be the
last statement in the subprogram (logically, not physically; that is, it mus!t be the last statement
to which control passes).

Statement functions

Statement functions are embedded in the coding of the main program and are compiled as part
of the main program. Any calculation that can be expressed in a single statement, and produces
a single result, may be assigned a function name and referenced in the same way as a library
function. A statement function is defined in the form:

name (argument-1, argument-2,. . .argument-n] = expression

where nameis the symbolic name assigned lo the function and each argument isa dummy vari-
able thal represents one of Lthe argumenls.

The following rules apply to all functions:

1. The name may consist of one to six alphanumeric characters, the first of
which is alphabetic. It must differ from all other function names and
variable names used in the main program.

2. The argument list follows the name and is enclosed in parentheses. There
must be al least one argument. Multiple arguments are separated by
commas. Each argumenl must be a single nonsubscripled variable. These
arguments are only dummy variables, so their names may be the same as
names appearing elsewhere in the program. The dummy variable names do
indicate argument mode, however, by implicit or explicit mode typing.
There is no synlactical limil to the number ol arguments.

3. During each call of a function, the values of the variables supplied as the
arguments must be in the same mode as the arguments were when the lunc-
tion was defined.

4. Tmplicit mode typing ol the result of a function is determined by the first
letter of the function name. Functions that begin with I,]K,L,M, or N pro-
duce INTEGER results; others produce REAL results. Regardless of the first
letter, the result mode can be sel by an appropriale mode specification pre-
ceding the function definition stalement.

5. The expression that deflines the function may use library functions, pre-
viously defined function statements, or FUNCTION subprograms; but not
the function itself. Dummy variables cannol be subscripted.

6. Variables in the expression that are nol stated as arguments are lreated as
coefficients — i.e., are assumed to be variables appearing elsewhere in the
main program.

7. Statement [unctions must be defined following specification and DATA
statements hut hefore the firsl execulable statement ol a program.

SUBROUTINES

Some types of subroutines include:

FDR3057 7-2 1 March 1980

FORTRAN FUNCTION AND SUBROUTINE STRUCTURE 7

PRIMOS system subroutines
These invoke the PRIMOS system to perform the actual work. They allow lile transfer, attach-
ing, etc. (See PRIMOS Subroutines Reference Guide).
Application library subroutines
These handle [ile manipulation (opening and closing, reading, and writing, etc.) and data trans-
fers, greatly enhancing the capability of the FORTRAN language (PRIMOS Subroutines Refer-
ence Guide).
FORTRAN math subroutines
These handle mathematical calculations such as matrix multiply and inversion, permutations,
ele. (See PRIMOS Subroutines Reference Guide).
User-defined subroutines
Called in the same manner as those supplied with the system. They are constructed as follows:
SUBROUTINE name [[argumenl-1, argumenl-2, . . .argumen!-n]]
— (Any number of FORTRAN statements which perform the required calculations, using

the supplied arguments, if any, as values.)

RETURN
END

SUBROUTINE statement: The SUBROUTINE statemen!, which must be the first statement of

a SUBROUTINE subprogram, assigns the name ol the subprogram and identifies the dummy
- argumentls, il any.

The subprogram name must conform to the normal rules [or symbolic names with regard to the

number of characters, but the first letter does not set the data mode of the resull, The name must

be unique to both the subprogram and a main program which calls il.

The argument list usually consists of a series of dummy variables which are processed by the
subrouline and return arguments to the main program. Each argaument may bea variable, array.
or function name. If an argument is the name of an array, it must be mentioned in a DIMEN-
SION statement following the SUBROUTINE statement.

There is no syntaclical limil to the number ol arguments. A subroutine with no argumenls is
allowable. Such a subroutine might obtain arguments from, and return results to, COMMON.
Or it might be used to output a message or control function to a peripheral device.

CAUTION
Arguments thal return values lo the main program must not be
constants or expressions in the calling sequence.

Body of a subroutine: The body of the subroutine can consist of any legal FORTRAN stalements
except SUBROUTINE, BLOCK DATA, or FUNCTION statements. The results of calculations
may be stored in variables used by both the subprogram and main program, or they may be
placed in COMMON. Variables may be used freely on either the right or left side of the equal

1 March 1980 7-3 FDR3057

7 FORTRAN FUNCTION AND SUBROUTINE STRUCTURE

sign in assignment statements. Each variable that represents a result must appear on the left
side ol al leasl one assignment statement, in order to present Lhe result to the main program.

The subroutine is terminated by a RETURN statemenl (described previously). The last phy-
sical slatemenl in a subrouline must be an END slatement,

FDR3057 7-4 1 March 1980

FORTRAN

function reference

FORTRAN FUNCTION LIBRARY

The following functions are available to perform mathematical and logical operations. These
functions are part of the FTNLIB library file for the R-identity and the PFTNLB and IFTNLB
library files for the V-identily. The data mode(s) expected in the argument list and the data
mode of the value returned are shown [or each function in the list. The following abbreviations
are used:

CP Complex number

DP Double-precision floating-point number
I Integer (short or long)

| Integer (long)

SP Single-precision [loaling-point number

Additional detail on the functions themselves (rather than their operations) will be foundin the
Reference Guide, PRIMOS Subroutines.

Trigonometric functions

The arguments ol the trigonometric functions COS, CCOS, DCOS, SIN, CSIN, and DSIN are in
radians, not in degrees.

The IMPLICIT statement and FORTRAN intrinsic functions

Changing FORTRAN's typing conventions with the IMPLICIT statement has no effect on the
intrinsic functions. However, the random number generators, RND and IRND. are not intrinsic
functions. If the IMPLICIT statement changes the default typing of T or R and the random num-
ber [unctions are used in the program, then these functions must be typed explicitly as REAL*4
(for RNDJ and INTEGER*2 (for IRND).

V-Mode FORTRAN library

Certain single-argumenl scientific subroutines in the V-mode FORTRAN library will be auto-
malically replaced by the compiler with their short call versions, identified by the suffix $X.
These $X versions execute faster than their regular counterparts.

The $X versions are not directly accessible to the FORTRAN programmer {and have different
calling sequences). They will only be noticeable al the load-map level.

Mixing long and short integers

Short integers occupy one word of memory, long integers two words. When long integers are
converted to short integers, the 16 low order hits of the long integer are stored in the short
integer. When a short integer is converted to a long integer, the low order word is set equal to the
short integer; the high order word is sign-extended (padded with 0's or 1's according to the sign
of the short integer, + or - 1. Il it is necessary, in a program, to convert between integer modes, it
is strongly recommended that this be done with the intrinsic functions: INTL, INTS. (In the
following, it is assumed that all variable names beginning with I have been declared to be short
integers and all variable names beginning with | to be long integers.)

1 March 1980 8-1 FDR3057

8 FORTRAN FUNCTION REFERENCE

19

To convert between integer modes, use:

] = INTL (1)
[=INTS (])

If a long (orshort) integer is assigned the value of a short (or long) integer, mode conversion
wil also occur. This is not considered to be good programming practice and is discouraged.
(See Assignment Statements in Section 6).

In functions which accepl mixtures of short and long integers in the argument list, the short
integers will be internally converted to long integers [(with sign-extension) and the value
determined. The value will be calculaled as a long integer. For these functions it is recom-
mended that the left-hand side of the assignment statement be along integer. Conversiontoa
short integer should be explicit, not implicit.

IX = AND (JA, |B, IC)
is less desirable than

[X = AND (JA, |B, INTL (IC))
and

IY = AND (JA, |B, IC)
is less desirable than

IY = INTS (AND (JA, [B, INTL (IC)))

The INTS and INTL lunctions will take as arguments short integers (INTEGER*2), long inte-
gers (INTEGER*4), single-precision floating-point numbers (REAL*4), and double-precision
floating-point numbers (REAL*8) and return either a short (INTS) or a long (INTL) integer.
In general, the logical functions AND, OR, and XOR and the minimum/maximum functions will
return a long integer if any of the arguments are long integers. The NOT function returns an
integer of the same mode as its argument. The shifting and truncating functions LS, LT, RS, RT,
and SHFT return an integer of the same mode as their first argumenl, that is, the integer on
which shifting and/or truncation is to take place.

The INT, IDINT, IFIX, MAX1 and MIN1 functions: The results of these functions will be the
default INTEGER type for the module. That is, if compilation uses the -INTS (default) option.
then the mode of INT, IDINT, IFIX, MAX1 and MIN1 will be INTEGER*2. If compilation is per-
formed with the -INTL option, then their mode will be INTEGER*4.

FORTRAN functions

ABS Calculates the absolute value of the argument.
SP = ABS (SP)
AIMAG Converts the imaginary part of a complex number to a single-preci-

sion floating-point number.
SP = AIMAG (CP)
AINT Truncates a single-precision {loating-point number to a single-pre-
cision floating-point number whose value is integral.
SP = AINT (SP)

ALOG Computes the natural logarithm (base e) of the argument. If the
argument is not positive, the error LG is generated.
SP = ALOG (SP)

FDR3057 8-2 I July 1982

o

FORTRAN FUNCTION REFERENCE 8

ALOG10

AMAXO

AMAX1

AMINOD

AMIN1

AMOD

AND

ATAN

ATAN2

CABS

CCOS

CEXP

CLOG

CMPLX

CONJG

cOos

CSIN

1 March 1980

Compules the base-10 logarithm of the argument. If the argument is
nol positive, the error LG is generated.

SP = ALOG10 (SP)

Finds the maximum value in a variable list of integers. The list may
be a mixture of long and short integers.

SP = AMAXO (IL.I2,. . .In)

Finds the maximum value in a variable list of single-precision
[loating-point numbers.
SP = AMAX1 (S5P1,SP2,. . .,.SPn])

Finds the minimum value in a variable list of integers. The list may
be a mixture of long and short integers.

SP = AMINO (I1,12.. . ..In)

Finds the minimum value in a variable list of single-precision float-

ing-point numbers.
SP = AMIN1 (SP1,SP2,. . ..SPn)

Compules the remainder when one single-precision [loating-point
number (SP1) is divided by another (5P2).
SP = AMOD (5P1,5P2)

Perlorms a logical AND operation, bit by bit, on a variable list of
integers, long and/or shorl.

I = AND (I1,12,. . .,In)

Calculates the principal value, in radians, of the arclangent of the
araument.

SP = ATAN (SP)

Calculates the principal value, in radians, of the arctangent of one
single-precision floating-point number (SP1) divided by another
(SP2). [l both arguments are zero, the error message AT is
cenerated.

SP = ATANZ (SP1,SP2)

Compules the absolute value of a complex number, returning a
single-precision floating-point number as the result.

SP = CABS (CP)

Computes the cosine ol a complex number.

CP = CCOS (CP)

Calculates the exponential of a complex number.

CP = CEXP (CP)

Calculates the natural logarithm (base e) of the argument.

CP = CLOG (CP)

Converts two single-precision floating-point numbers inlo a com-
plex number. The first argument becomes the real part of the com-
plex number; the second argument becomes the imaginary part.
CP = CMPLX (SP1,SP2)

Computes the conjugate of a complex number.

CP = CONJG (CP)

Computes the cosine of a single-precision floaling-point number.

SP = COS (SP)

Computes the sine of complex number.

CP - CSIN (CP)

8-3 FIDR3057

8 FORTRAN FUNCTION REFERENCE

FDR3057

CSQRT

DABS

DATAN

DATAN2

DBLE

DCOS

DEXP

DIM

DINT

DLOG

DLOG:z2

DLOG10

DMAX1

DMIN1

DMOD

Calculales the square root of a complex number.
CP = CSQRT (CP)

Compules the absolute value of a double-precision floating-point
number.
DP = DABS (DP)

Computes, in radians, the principal value of the arctangent of the
argument.
DP = DATAN (DP)

Calculates the principal value, in radians, of the arctangent of one
double-precision {loating-point (DP1) divided by another (DP2). If
both arguments are zero, the error message DT is generated.

DP = DATANZ2 (DP1,DP2)

Converts a single-precision floating-point number to a double-pre-
cision floating-point number.
DP = DBLE (SP)

Computes the cosine of a double-precision floating-point number.
DP = DCOS (DP)

Compules the expontial of a double-precision {loating-point
number.

DP = DEXP

Computes the posilive difference between two single-precision
floating-point numbers.

SP = DIM (SP1,5P2)

Truncales the {ractional parl of a double-precision floating-point
number.
DP = DINT (DP)

Computes the natural logarithm (base e) of a double-precision
floating-point number. If the argument is not positive, the error
message DL is generaled.

DP = DLOG (DP)

Computes the base-2 logarithm of a double-precision floating-point
number, If the argument is not positive, the error message DL is
generated.

DP = DLOG2 (DP)

Computes the base-10 logarithm of a double-precision floating-
point number. If the argument is not positive, the error message DL
is generated.

DP = DLOG 10 (DP)

Finds the maximum value among a variable list of double-precision
floating-point numbers.

DP = DMAX1 (DP1,DP2,. . .,DPn)

Finds the minimum value among a variable list of double-precision
floating-point numbers,

DP = DMIN1 (DP1,DP2,. . .,.DPn)

Computes the remainder when one double-precision floating-point
number (DP1) is divided by another (DP2). If DP2 is zero, the error
message DZ is printed.

DP = DMOD (DP1,DP2)

8-4 1 March 1980

FORTRAN FUNCTION REFERENCE 8

DSIGN

DSIN

DSQRT

EXP

— FLOAT

IABS

IDIM

IDINT

IFIX
INT

INTL

INTS

IRND

ISIGN

_(———

LOC

1 March 1980

Combines the magnilude of one double-precision [loating-point
number (DP1) with sign of a second (DP2).
DP = DSIGN (DP1,DP2)

Computes the sine of a double-precision floaling-poinl number.
DP = DSIN (DP)

Computes the square root of a double-precision floating-point
number. If the argument is negative, the error message SQ is
generaled.

DP - DSQRT (DP)

Computes the exponential of a single-precision floating-point
number. I there is an exponent underflow or overflow, the error
message EX is generated.

SP = EXP (SP)

Converts an integer to a single-precision floating-point number.
The function will accept either a shorl or a long integer as the
argument.

SP = FLOAT (I)

Computes the absolute value of an integer. The argument may be
either a long or short inleger.

1 = TABS (I)

Computes the positive difference between two integers. The unc-
tion will accept any mixture of short and long integers.

[= IDIM (I1,I2)

Converts a double-precision floating-point to an integer.

I = IDINT (DP)

Converts a single-precision floating-point number to an integer.
Both lunctions are included in the library to ease conversions from
other systems,

I = IFIX (SP)

I =INT (SP)

Converts ils argument to a long integer.
J] = INTL (I)

Converts ils argument lo a short integer.
[=INTS (])

Invokes the random number generator
12 = IRND (I1)

I1 Operation 12
>0 Initializes the random number gen- 12 =11
eralor
=0 Generates a random number 0<12<32767
<0 Initializes the random number gen- 0=12<32767
erator and returns the first random
number

Combines the magnitude of one integer (I1) with the sign of a
second (12).

I = ISIGN (I1,12)

Generates an integer value representing the memory address where
the argument of LOC is located. The argument may be a constanl.

8-5 FDR3057

8§ FORTRAN FUNCTION REFERENCE

R
W

MAX0

MAX1

MIND

MIN1

MOD

NOT

OR

REAL

RND

FDR3057

variable or array name, or a subscripted array element.

constant

variable name
I =LOC array name

array element

Note
In the 64V mode, LOC may be passed as an
argument in functions or subroutines, e.g.,
I = AND(LOC(A),LOC(B)). In this mode,
LOC returns a two-word value: the first
word represents the segment number; the
second is the word number in the segment.

Shifts an integer variable left by a specified number of bits; vacated
bits are filled with zeroes.

12 = LS (11, IP)

where IP is the number of bits to be shifted to the left. If [P <0, no
change is made to the integer.

Preserves a specified number of left-most bits and sets the rest to
zero (left truncation). Saves the first IP from the left and sets the
rest of the bits to zero. If IP<0, the entire integer is set to zero.
12 = LT (I1,IP)

Finds the maximum value among a variable list of integers. (see
AMAXOo)

I = MAXo (IL12,. . .In)

Finds the maximum value among a variable list of single-precision
floating-point numbers and converts it to an integer.

I = MAX1 (SP1,SP2,. . .,.SPn)

Finds the minimum value among a variable list of integers. (see
AMINO).

I = MINO (I1,12,. . .,In)

Finds the minimum value among a variable list of single-precision
floating-point numbers and converts it to an integer (see AMIN1)
I = MIN1 (SP1,SP2,. . .,SPn)

Computes the remainder when one integer (I1) is divided by
another (12).

I = MOD (I1,12)

Performs a logical NOT operation (1's complement) on its argu-

ment.

I1=NOT (I)

Performs a logical (inclusive) OR operation on two integers.
I = OR (I1,]12)

Converts the real part of a complex number to a single-precision
floating-point number.

SP = REAL (CP)

Invokes the random number generator.

SP = RND (I)

I Operation)

>0 Initializes the random number gen- SP = FLOAT (I)
erator

8-6 1 March 1980

FORTRAN FUNCTION REFERENCE &

=0 Generates a random number 0.0<SP< 1.0
<0 Initializes the random number gen- 0.0<SP<1.0
erator and returns the first random
number
RS Shifts an integer variable right by a specified number of bits;

vacated bits are filled with zeros.

I2 = RS (ILIP)

where IP is the number of bits to be shifted to the right. If IP <0, no
change is made to the integer.

RT Preserves a specified number of right-most bits and sets the rest to
zero (right truncation). Saves the first IP bits from theright and sets
the rest of the bits to zero. If IP<O0, the entire integer is set to zero.
I2 = RT (I1,IP)

Srav'e ov long

SHFT Performs logical shift operations on integer variables.

1. IS = SHFT (I): In this form, the variable is unchanged and the
value is the variable itself; this form has no real use.

2. IS = SHFT (LIP1): performs a shift operation on the variable. If
IP1>0, the shift is to the right; if IP1<C0, the shift is to the left; if
IP1=0, no shift occurs. This form is equivalent to the RS and LS
functions.

Operation Function Equivalent SHFT function
Right shift RS (LIP) SHFT (I,IP)

Left shift LS (LIP) SHFT (1,-IP)

Right truncate RT (LIP) SHFT (1,IP-16,16-IP)

Left truncate LT (I,IP) SHFT (I,16-1P,IP-16)

3. IS = SHFT (L,IP1, IP2): Performs two shift operations, first by
IP1 (setting zeroes in vacated bits), then by IP2 (setting zeroes in
vacated bits). The sign of IP1 and IP2 determine the direction of
the shift while their magnitude determines the number of bits to
be shifted. As seen above, the RT and LT functions are equiva-
lent to special forms of SHFT with three arguments.

SIGN Combines the magnitude of one single-precision floating-point
number (SP1) with the sign of a second (SP2).
SP = SIGN (SP1,5P2)

SIN Computes the sine of a single-precision floating-point number.
SP = SIN (SP)
SNGL Converts a double-precision floating-point number to a single-

precision floating-point number.
SP = SNGL (DP)

SQRT Computes the square root of a single-precision floating-point
number.
SP = SQRT (SP)

TANH Computes the hyperbolic tangent of a single-precision floating-

point number.
SP = TANH (SP)

XOR Performs a logical exclusive OR on a variable list of integers.
I = XOR (11,12, . .,In)

FDR3057 8-7 1 May 1981

COMPILER ERROR MESSAGES

ARG LIST REQUIRED
Argument list not specified in FUNCTION statement.

ARRAY NAME REQUIRED

Something other than an array name appearedin a position where only an array nameis
allowed. (example: ENCODE or DECODE statement)

ARRAY/BLOCK OVERFLOW

Array/block exceeds space allocated to user.

ARRAY NESTING OVFLO

Use of arrays as subscripts in other arrays exceeds allowable nesting limit (32).

CHAR STRING SIZE

A character string was not terminated, or a string ina DATA statement was longer than
the associated variable list.

COMMON NAME ILL.
Illegal use of a name already declared in COMMON.

COMPILER OVERFLOW

Insufficient memory to compile program.

CONFLICTING DECLARN

Name(s) declared as more than one data mode.

CONSTANT REQUIRED

A name appeared where only a constant or parameter is allowed (i.e., DIMENSION
statement in a main program].

CONSTANT TOO LARGE

Constant exponent excessive for data type.

DATA MODE ERROR

Illegal mode mixing in expression, expression mode not of required type, or constant in
DATA statement is of different mode than associated name in variable list.

1 March 1980 A-1 FDR3057

A ERROR MESSAGES

DIVISION BY ZERO

Attempt has been made to divide by a zero constant.

END/REC PROHIBITED
The END=statement-number expression cannot be used in a direct access READ or
WRITE statement.

EXCESS CONSTANTS

Number of constants in DATA statement exceed variables for storing them.

EXCESS SUBSCRIPTS
Too many subscripts in EQUIVALENCE or DATA list item.

FUNCT VAL UNDEFINED
The function name was not assigned a value in a FUNCTION subprogram.
GBL MDE/IMPL CNFLCT

IMPLICIT statement and global mode specification may not be used in the same pro-
gram unit.

ILL. CONSTANT EXPR.
Variables found in a PARAMETER statement.

ILL. DO TERMINATION

Improper DO loop nesting, or an illegal statement terminating a DO loop.

ILL. EQUIVALENCE

EQUIVALENCE group violates EQUIVALENCE rules or specifies an impossible
equivalencing.

ILL. LOGICAL IF

A logical IF contained in a logical IF, or a DO statement contained in a logical IF.

ILL. OVER 64K COMMON

A COMMON area exceeds 64K words of user memory. Alternatively, COMMON is
offset an odd number of words and the compiler is trying to allocate words of a data ele-
ment in two different segments. Re-arrange order of variables in COMMON so no
element overlaps a segment boundary.

ILL. STMT NO. REF
Reference to a specification statement number.

ILL. UNARY OP USAGE

Improper use of an operator in an expression.

ILL. USE OF ARG
SUBROUTINE or FUNCTION statement used in COMMON, EQUIVALENCE, or
DATA statement.

FDR3057 A-2 1 March 1980

18

ERROR MESSAGES /A

sE OF CLMN. 6

Joamt
=
o
o
wn

it

Continuation line found without a continuation or statement line preceding it.
ILL. USE OF STMT

Statement illegal within the context of the program; for example, RETURN in a main
program, SUBROUTINE not the first subprogram statement, or specification state-
ments out of order. If an undeclared array name is used on the left in an assignment
statement, the compiler will assume it is a statement function definition and will there-
fore generate this error.

INCONSISTENT USAGE

The use of the name listed in the error message conflicts with earlier usage. This
message also will be generated at the END statement ina SUBROUTINE subprogram if
the subroutine name is used within the subprogram.

INTEGER REQUIRED

A non-integer name or constant appeared where only an integer name or constant is
allowed.

INTERNAL ERROR

Some combination of source code statements has generated an unresolvable error. The
programmer should never see this error.

MULT DEF STMT NO.
The statement number of the current line has already been defined.
NAME REQUIRED
A constant appeared where only a name is allowed.
NO DEBUG IN R MODE
The -DEBUG (or -PROD) option was included for compilation in a mode other than
64V. Compilation will proceed as if the debugging option had not been included.
INO END STMT
The last statement in the source was not an END statement.
NO PATH TO STMT

The current statement does not have a statement number and the previous statement
was an unconditional transfer of control. This will also be generated at the end of a pro-
gram unit for labelled statements, if control cannot reach the statement.

NONCOMMON DATA
A BLOCK DATA subprogram initialized data not defined in COMMON or contained
executable statements.

PAREN NESTING>31

Nesting of parentheses (syntactical, array, or function reference) in expressions may
not exceed 31.

1 May 1981 A-3 FDR3057

/A ERROR MESSAGES

RENTHESIS MISSING

Incorrect parenthesis used in an implied DO loop in an I/0 statement.

A
]
W
r. i

SAVE

STMT NAME SPELLINC(
A statement name was recognized by its first four characters, but the remaining spell-
ing was incorrect.

STMT NO. MISSING

A FORMAT statement appeared without a statement number.

BPGM/ARR NAME ILL

Illegal usage of subprogram or array name.

SUBPROGRAM NAME ILL

Illegal usage of subprogram name.

IBSCR ILI

OVARTAT T &1 ;
3 YMBOLIC SUBSCR

Illegal usage of symbolic subscript in a specification statement.

Number of subscripts used in an array is fewer than the number originally declaredina
DIMENSION or mode specification statement.

The listed variable did not appear in a specification statement (generated when the
undeclared variable check option is enabled).

UNDEF

) 5 1IVILT INU

The listed statement number was not defined in the subprogram. The listed line number
is the line number of the last reference to the statement number.

UNRECOGNIZED STM']

The compiler could not identify the statement.

Both the -DEBUG and -OPT (or UNCOPT] options were selected. Compilation will
proceed as if the optimization option had not been included.

FDR3057 A-4 1 May 1981

ERROR MESSAGES /.

cm TN Ay DETYTIRDA OD STOD

2T B y R E | : (" 'Y
RINANG — MU RE URIN UK o lUE

Occurs if either there is no STOP statement [main program) or RETURN statement
(subroutine) at the end of the program unit. This does not mean there is no RETURN
statement in a subroutine but that the RETURN statement immediately preceeding the
END statement is missing.

WARNING — name — N

B3
)]

Occurs only if -DEBUG option included. The local variable name, used in the program,
never had a value assigned to it at any point in the program.

WARNING — name — PARAMETER IS

Occurs only if -DEBUG option included. The variable name was initialized in a DATA
statement and remains constant throughout the program. It would be more efficient to
assign a value with the PARAMETER statement.

WARNING — name — VARIABLE NOT USED

Occurs only if -DEBUG option included. The variable name was declared in a specifica-
tion statement but not used in the program. Such variables are not accessible when
using the source level debugger (DBG).

1 May 1981 A-5 FDR3057

(

TERMINAL

full duplex
X-ON/X-OFF disabled

FNITOR (FD)
EDLL {\);“. flih:_.!,

INPUT (TTY)
LINESZ 144
MODE NCKPAR
MODE NCOLUMN
MODE NCOUNT
MODE NNUMBER
MODE NPROMPT
MODE PRALL
VERIFY

SYMBOLS

BLANKS
COUNTER
CPROMPT
DPROMPT
ERASE
ESCAPE
KILL
SEMICO ; end of line or command
TAB N

WILD !

~ b g AR W

VIRTUAL LOADER (LOAD)

Memory Location: 122770 - "144000
Loading address: current *PBRK value
Library: FTNLIB FORTRAN library
MODE: D32R
Sector Zero Base Area:

Base start at location '200

Base range '600 words
COMMON: Top ='077777

SEGMENTED-LOADER (SEG]

Loading address: current TOP+1 in current procedure segment
Stack size: '6000 words
Library: PFTNLB and IFTNLB libraries

1 March 1980 B-1 FDR3057

B SYSTEM DEFAULTS AND CONSTANTS

EXECUTION

A-register value 0
B-register value 0
X-register value 0

Program start address "1000
Bits 4-6 of Keys:
000 16K, sector-address
001 32K, sector-address
010 64K, relative-address
011 32K, relative-address
110 64K, segmented-address

PRIMOS

ERASE

INTERRUPT CONTROL-P or BREAK

KILL ?

Files: created with protection, owner all access rights (7), non-owner no access rights
(0).

FORTRAN COMPILER (FTN)

BINARY disk-file

ERRTTY

FP

INPUT disk-file

INTS

LISTING NO no listing file

NOBIG

NODCLVAR

NODEBUG 18
NOFRN ‘
NOTRACE

NOXREF

SAVE

STDOPT

32R

FDR3057 B-2 1 May 1981

ASCII character set

The standard character set used by Prime is the ANSI, ASCII 7-hit set.

PRIME USAGE

Prime hardware and software uses standard ASCII for communications with devices. The
following points are particularly important to Prime usage.

o Qutput Parity is normally transmitted as a zero (space) unless the device requires
otherwise, in which case software will compule transmitted parity. Some controllers
(e.g., MLC) may have hardware to assist in parity generalions.

e Input Parity is ignored by hardware and by standard software. Input drivers are
responsible for making the parity bil suil the host soltware requirements. Some con-
trollers (e.g., MLC) may assist in parity error detection.

e The Prime internal standard for the parity bit is one, i.e., ‘200 is added to the octal
value,

KEYBOARD INPUT

Non-printing characters may be entered into text with the logical escape character * and the
octal value. The character is interpreted by output devices according to their hardware.

. A iz ; .
Example: Typing “207 will enter one character into the text.

CTRL-P ('220) is interpreted as a .BREAK.

ERs ('215) is interpreted as a newline (.NL.)

" ('242) is interpreted as a character erase

? ('277) is interpreted as line kill

N ('334) is interpreled as a logical tab (Editor)

1 March 1980 C-1 FDR3057

C ASCII CHARACTER SET

Octal
Value

200
201
202
203
204
205
206
207
210
211
212
213
214
215
216
2.7
220
221
222
223
224
225
226
227
230
231
232
233
234
235
236
237

ASCII
Char

NULL
SOH
STX
ETX
EOT
ENQ
ACK
BEI,
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DC1
NC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
us

Table C-1. ASCII Character Set (Non-Printing)

Comments/Prime Usage

Null character — filler

Start of header (communications)

Start of text (communications)

End of text (communications)

End of transmission (communications)

End of I.D.(communications)

Acknowledge alfirmative (communicalions)
Audible alarm (bell)

Back space on position (carriage conlrol)
Physical horizontal tab

Line feed; ignored as terminal input
Physical vertical tab (carriage control)
Form feed (carriage control)

Carriage return (carriage control) (1)
RRS-red ribbon shifl

BRS-black ribbon shifl

RCP-relative copy (2)

RHT-relative horizontal tab (3)

HLF-half line feed forward (carriage control)
RVT-relative vertical tab (4)

HLT-half line feed reverse (carriage control)

Negalive acknowledgement (commu nications)

Synchronocity (communications)

End of transmission block (communicalions)
Cancel

End of Medium

Substituie

Escape

File separator

Group separator

Record separator

Unit separator

Control
Char

>

>

>
Ve

>
’ﬁ‘

o S L

>

> > > 5 o= P
P NN oo

>

S

e

Notes

Interpreted as .NL. at the terminal,

BREAK. al terminal. Relative copy in file; nex! byle specilies number of

bytes to copy from corresponding position of preceding line.

Next byte specifies number of spaces to insert.

Next byte specilies number of lines to inser!.

Conforms to ANSI X3.4-1968

H 1 " 1 3 1 (A ~ir
The parity bit ('200) has been added for Prime-usage. Non-printing characters {"¢) can be
entered at most lerminals by typing the (control) key and the characler key simultaneously.

FDR3057

1 March 1980

ASCII CHARACTER SET G

Table C-2. ASCII Character Set (Printing)
Octal ASCII Octal ASCII Octal ASCII
Value Character Value Character Value Character
240 .SP. (1) 300 @ 340 ‘(9)
241 ! 301 A 341 a
242 " (2) 302 B 342 b
243 # (3) 303 C 343 G
244 $ 304 D 344 d
245 % 305 X 345 e
246 & 306 F 346 f
247 ' (4) 307 G 347 g
250 (310 H 350 h
251) 311 I 351 i
252 x 312 | 352 i
253 + 314 K 353 k
254 . (5) 314 L 354 1
255 - 315 M 355 m
256 . 316 N 356
257 / 317 0 357 0
260 0 320 P 360 p
261 1 321 Q 361 q
262 2 322 R 362 r
263 3 323 S 363 s
264 4 324 T 364 t
265 5 325 u 365 u
266 6 326 \Y 366 v
267 7 327 w 367 w
270 8 330 G 370 X
271 9 331 b 371 v
272 : 352 Z 372 7
273 : 333 [373 {
274 g 334 \ 374 \
275 = 335] 375 }
276 > 336 S 376 ~ [10)
277 ? (6) 337 __(8) 377 DEL (11)

1. Space forward one position

2. Terminal usage — erase previous character
3. L in British use

4. Aposlrophe/single quole

5. Comma

6. Terminal usave — kill line

7. 1963 standard 1; terminal use — logical escape
8. 1963 standard -

9. Grave

10. 1963 standard ESC

11. Rubout — ignored

Conforms to ANSI X3.4-1968
1963 variances are noted
The parity bit ('200) has been added for Prime usage.

1 March 1980 C-3 FDR3057

Prime memory formats

of FORTRAN data types

INTRODUCTION

Prime machines use a 16-bit memory word which is addressable by word. Prime's FORTRAN
data types depart slightly from the ANSI standard which states that LOGICAL, INTEGER, and
REAL items occupy one storage unit each. Il a slorage unit is 32 bits (4 bytes=2 words), then the
requirements of ANSI are met except for the LOGICAL type which is only 16 bits. Below is a
representation of the sizes of data entities, for the purposes of EQUIVALENCE statements,
used by Prime. Detailed descriptions of each type are presented separately.

1 16
LOGICAL
1 16
s INTEGER*2
1 16 32
S INTEGER*4
T
1 16 24 32
S MANTISSA EXPONENT | REAL (REAL*4)
-
1 16 32 48 64
A A
DOUBLE PRECISION
S MANTISSA EXPONENT (REAL*8)
T T
1 16 24 32 48 56 64
EXPONENT EXPONENT s
S MANTISSA (REAL) EREAL;‘ MANTISSA (IMAGINARY) (IMAGINARY] | COMPLEX

T T

Nole
There is no requirement for single, double, or quadruple word
alignment in these entities.

1 March 1980 D-1 FDR3057

D PRIME MEMORY FORMATS OF FORTRAN DATA TYPES

DATA TYPES

LOGICAL 16 bits. Bits 1-15=0, Bit 16=0=.FALSE., 1=.TRUE.

These values are equivalent to INTEGER*2 values of 0 and 1 respectively. Any other values are
illegal for LOGICAL variables.

INTEGER*2 16 bits. Bit 1=sign bil. INTEGER numbers are in 2's complemen! representation
with a value range of -32768 to 32767. These numbers in octal are 100000 and '077777 respec-
tively. Note that -0=0, and -(-32768)=-32768.

Integer arithmelic is always exact. Integer division truncates, rather than rounds.

INTEGER*4 32 bils. Bil 1=sign bit. Integer numbers are in 2's complement representation witha
value range of -2147483648 to 2147483647. These numbers, in octal (word 1, word 2) are
(100000, '000000) and (077777, '177777) respectively. Note that -0=0 and
-(-2147483648)=-2147483648.

Integer arithmetic is always exacl. Integer division truncates, rather than rounds.

CAUTION
Explicit use of DBLE (FLOAT(1*4)) can cause the loss of the
low-order 8 bits of precision. Mixed mode arithmetic, however,
will not lose precision.

REAL*4 32 bits. Bit 1=sign bit. Bils 2-24=mantissa. Bils 25-32=exponent. The mantissa and sign
are treated as a 2's complement number and the exponent is an unsigned, excess 128, binary
exponent. In general, any floaling poinl number is represented as:

N=M * 2%* (E-128)
where
-1sSM<-1/2 or 1/2<M<1
0<<E<255
Zero is represented as M=0, E=0.
The value range, in octal (word1, word2) is:

(100000, '000377) [See Note] to (077777, '177777)
corresponding to -1*2** (127) and (1-e)*2** (127).

The values closest to zero, in oclal are:
(187777, "177400) and ('040000, '000000) [See Note]
corresponding to (-1/2+e)*2**-128 and 1/2%*2** -128

Normalizalion ensures that bits 1 and 2 are different and is achieved by shilting left 1 bit at a
time. Hence, the effective precision is belween 22 and 23 bits.

Note
These numbers will cause exponent overflow il negated due to
the asymmetry of 2’s complement notation.

DOUBLE PRECISION 64 bits. Bil 1= sign bit. Bits 2-48 = mantissa. Bits 49-64 = exponent. The
mantissa and sign are trealed as a 2's complement number and the exponent is a signed, excess
128, binary exponent. In general, any double precision floating point number is represented as:

N=M*2 (E-128)

where
-1=<M< - 1/2 or 1/2<M<1
-32768<E<32767.

FDR3057 D-2 1 March 1980

PRIME MEMORY FORMATS OF FORTRAN DATA TYPES D

Zero is represented as M = 0, E = 0.

The value range, in octal (word1, word2, word3, word4) is:
(100000, '000000, '000000, '077777) [See Note] to
(077777, 1797277, 177777, "077777)

corresponding to -1*2**32639 and (1-e)*2**32639

The values closest to zero, in oclal, are:

(137777, 177777, 177777, '100000) and
('040000, '000000, ‘000000, '100000) [See Note]

corresponding to (-1/2+e)*2**-32896 and 1/2*2**-32896

Normalization ensures that bits 1 and 2 are different and is achieved by shifting left 1 bit at a
time. Hence, the effective precision is between 46 and 47 bhits.

Note
These numbers will cause exponent overflows if negated due to
the asymmetry of 2's complemenl notation.

COMPLEX 64 bits. A complex number is defined as two REAL*4 entities (see above) represent-
ing the real and imaginary parts.

CHARACTERS Prime uses ASCII as its standard internal and external characler code. It is the
8-bit, marking variety (parity bit always on). Thus, Prime’s code set is effectively a 128-char-
acter code set. (ASCII spacing representation, parity bit always off, can be entered into the
system, but most system software will fail to recognize the characters as their terminal printing
equivalent.)

Characters packed into numeric items will always be negative numbers if accessed numeri-
cally. Also, if the data item is not completely filled (e.g., A2 format intoa REAL*4 item), the item
will be right padded with blanks (ASCII '240).

The positions of the exponents for REAL and DOUBLE PRECISION items precludes sorting
character data as REAL items, but is quite legitimate in integer items. However, EQUAL
comparisons in REAL items are valid.

1 March 1980 D-3 FDR3057

N

MISC.

= (in B format) 6-24

$ [FORTRAN address constants)
5-6

$ (in B format) 6-24

SINSERT statement 6-10

SINSERT, nesting not allowed
6-10

$X version. subroulines 8-1

. [singles quote in IBM format
direct access READ) 6-17

"’ (single gquote representation in
ASCII string) 5-4

* [in B format] 6-24

+ (in B format) 6-24

, [in B format) 6-24

. (in FORMAT statement) 6-20

- (in B formalt] 6-24

-32R (compiler option) 2-9

-64R (compiler option] 2-9

-64V (compiler oplion] 2-9

-BIG [compiler oplion) 2-2

-BINARY [(compiler option) 2-2

-DCLVAR (compiler option) 2-3

-DEBASE (compiler option) 2-3

-DEBUG (compiler oplion) 2-3

-DYNM (compiler oplion] 2-3

-DYNM option, compiler, use
of 4-6

-ERRLIST (compiler option) 2-4

-ERRTTY (compiler option) 2-4

-EXPLIST (compiler option) 2-4

-FP [compiler option) 2-4

-INPUT (compiler option) 2-4

-INTL (compiler option) 2-4
-INTS (compiler option) 2-5
-LIST (compiler option) 2-5

-LISTING (compiler option] 2-5

-NOBIG (compiler option) 2-5

-NODCLVAR [compiler option)
2-5

-NODEBUG (compiler option)
2-5

-NOERRTTY (compiler option)
2-5

-NOFP (compiler oplion) 2-5

-NOTRACE (compiler oplion)
2-6

-NOXREF (compiler option) 2-6

-OPT (compiler option) 2-6

-PBECB (compiler option) 2-6

-PROD (compiler option] 2-6

-SAVE (compiler oplion) 2-6

-SOURCE (compiler option) 2

-STDOPT [compiler option) 2

~-TRACE (compiler option) 2-6

~-UNCOPT (compiler oplion) 2

-6
-6

1 March 1980

‘L. (compiler oplion] 2-7
-XREFS (compiler option) 2-7
« [in B format) 6-24

*ANDe truth table 5-6
JALSE. 5-4

NOTs truth table 5-6

«ORe truth table 5-6

‘TRUEe 5-4

/ (in FORMAT stalement) 6-20
// (blank COMMON)] 6-6

32R {compiler option) 2-9
64R (compiler option) 2-9
64V (compiler option) 2-9

64V-mode COMMON, optimiza-
tion 4-4
. [FORTRAN octal numbers) 5-3

A

Ainput format 6-23
A output format 6-22
A register 2-9
A register defaults 2-9
Address constants 5-6
Address, call by 6-3
AND truth table 5-6
ANSI standard data storage D-1
Application library subroutines
7-3
Area TRACE statement 6-10
Arguments:
function 7-2
subroutine 7-3
Arithmetic:
IF statement 6-12
mixed mode 6-10
operators 5-6
vs. logical IF 4-6
Arrays: 5-5
dummy argument, over 64K
word COMMON 6-6
in over 64K word
COMMON 6-6
segment-spanning 2-2
ASCII:
character set C-1
character strings 5-4
characters, non-printing C-2
characters, printing C-3
data storage format D-3
keyboard input C-1
parity C-1
Prime usage C-1
Assembly language, interface
to 1-8
ASSIGN statemenl 6-11
Assigned GO TO slatement 6-12
Assignment statements 6-10
Assignment stalements, data
mode rules, table 6-12

ATTDEV subroutine 6-15
Audience 1-1

B

B format, details 6-22

B output format 6-22

B register 2-9

B register defaults 2-9

BACKSPACE statement 6-26

Base areas, conversation 2-3

Batch environment 1-4

BIG [compiler option) 2-2

Binary file, compiler 2-2

Binary file, compiler (unit 3)
2-12

Binary files, concatenating 2-13

Binary READ statement 6-17

Binary WRITE statement 6-19

BINARY:
(compiler option) 2-2
(PRIMOS command) 2-13

Bit-device correspondence,
compiler 2-12

Bit-mnemonic correspondence, A
register 2-10

Bit-mnemonic correspondence, B
register 2-10

Blank COMMON 6-5

BLOCK DATA statement 6-3

Block data subprogram 6-3

BLOCKDATA statement 6-3

C

Call by address 6-3

Call by value 6-3

CALL EXIT 1-4

CALL statemenl 6-27, 6-9

Change 170 unit physical device
carrespondence 6-15

Changing record size 6-15

CHARACTER data storage
format D-3

Character set, ASCIl C-1

Character set, legal 5-1

Character string, inpul, lisl
directed 6-18

Circular reasoning see proof by
assumption

CLOSE (PRIMOS command)
2-13

CLOSE ALL 2-13

Closing files 2-13

COBOL, interface 1-8

Code, relative address 2-9

Code, segmented address 2-9

Codes, concordance 2-8

Coding statemenls 6-19

FDR3057

X INDEX

Coding slrategy 3-1
Column 6 for conlinuation 5-2
Columns 73-80 5-2
Comment lines 5-2
Comments, use of 3-2
COMMON block FSIOBF 6-15
COMMON block LIST 8-6
COMMON blocks 6-5
COMMON blocks over 64K
words 6-6
COMMON slatemenl 6-5
COMO, use with TRACE 6-10
Compatibility, languages 1-1
Compilation slatements 6-9
Compilation, end of, message
2-1
Compilation, V-mode vs.
R-mode 4-4
Compiler error message 2-2
Compiler oplion:
-32R 2-9

-64R 2-9
-64V 2-9
-BIG 2-2

-BINARY 2-2
-DCVAR 2-3
-DEBASE 2-3
-DEBUG 2-3
-DYNM 2-3
-ERRLIST 2-4
-ERRTTY 2-4
-EXPLIST 2-4
-FP 2-4

-INPUT 2-4
-INTL 2-4
-INTL 2-4
-INTS 2-5

-LIST 2-5
-LISTING 2-5
-NOBIG 2-5
-NODCLVAR 2-5
-NODEBUG 2-5
~-NOERRTTY 2-5
-NOFP 2-5
-NOTRACE 2-6
-NOXREF 2-6
-OPT 2-6
-PBECB 2-6
-PROD 2-6
-SAVE 2-6
-SOURCE 2-6
-STDOPT 2-6
-TRACE 2-6

-UNCOPT 2-6
-XREFL 2-7
-XREFS 2-7

Compiler:
-DCLVAR usage 3-2
-DYNM option, use of 4-6
binary file 2-2
binary file (unit 3] 2-12
descriplion 1-6
devices, defaull 2-12

FDR3057

error messages A-1
error messages, print al
terminal 2-4
ALTOr MESSALEes, SUPPress
printing 2-5
file specifications, table 2-3
file unit usage 2-12
FORTRAN, defaults B-2
global trace 3-3
inpul file 2-4
invoking 2-1
listing file 2-5
listing file (unit 2) 2-12
listing, defaull 2-5
listing, enable 2-5
listing, expanded 2-4
listing, full 2-5
object file 2-2
object file (unit 3] 2-12
paramelers 2-2
source file 2-6
source [ile (unit 1) 2-12
synlax 2-1
syntax checking 3-2
warning message 2-2
Compiling 2-1
Compiling from peripheral
devices 2-12
Compiling o peripheral
devices 2-12
Complete cross relerence 2-7
COMPLEX data storage format
-3
COMPLEX mode 6-5
Complex numbers 5-4
Composition, program 5-7
Computed GO TO stalement
6-12
Caoncatenating binary files 2-13
Concatenaling listing liles 2-13
Concordance see also cross
reference
Concordance address, over 64K
word COMMON 6-6
Concordance codes 2-8
Concordance, compiler, enable
2-7
CONIOC 6-15
Conserve loader hase areas 2-3
Conslanls: 5-2
address 5-6
range 5-2
system B-1
Conlinuation lines 5-2
CONTINUE statement 6-11
Control flow, conversion 1-4
Control flow, program,
monitoring 3-2
Conltrol lines 5-2
Conlrol statements G-11
Conversion:
control flow 1-4

X-2

-

functions 1-4
inpul/oulpul 1-4
program 1-2
source language 1-2
subroutines 1-4

CR (in B formal) 6-24

Cross reference:

see also concordance
codes 2-8
compiler, enable 2-7
complete 2-7
example 2-7
explanation 2-7
full 2-7

partial 2-7

short 2-7
suppression 2-6

D .
D inpul format 6-23
D output format 6-22
DATA statement 6-9
Data:
definition statement 6-9
mode convention, FORTRAN,
overriding 6-4
mode of function 6-3
mode rules for assignment
statements, table 6-12 —
mode lyping, parameler 6-5
modes 6-5
storage formal, ASCIl D-3
storage formal, CHARACTER
ND-3
storage format, COMPLEX
D-3
storage format, DOUBLE
PRECISION D-2
storage formal, INTEGER*2

D-2 . e
storage format, INTEGER*4
D-2

storage formal, LOGICAL D-2

storage formal, REAL*4 D-2

storage, ANSI standard D-1

lypes 6-5

types, FORTRAN, memory
formats -1

Database management syslem,

interface to 1-7

DBG (debugger) 3-1
DCLVAR (compiler option) 2-3
DEBASE (compiler oplion] 2-3
DEBUG (compiler option)

Debugger code generation
€

2-3
2-3

Debugger code generation,

g
suppress 2-5

Debugger, source level 3-1
Debugging 3-1 -
DECODE, formalted, slalementl

6-20

DECODE, list directed, statement

6-20

1 March 1980

INDEX

Default:
compiler devices 2-12
compiler listing 2-5
object code 2-9
record size 6-15
Defaults:
A register 2-9
B register 2-9
ED B-1
editor B-1
execution B-2
FORTRAN compiler B-2
FTN B-2
LOAD B-1
Loader B-1
PRIMOS B-2
SEG loader B-1
segmented loader B-1
system B-1
Delimiters, format 6-20
Delimiters, list directed 6-17
Descriptor repetition 6-20
Development, program 1-3
Development control statements
6-26
Device-bit correspondence,
compiler 2-12
Devices, compiler, default 2-12
DIMENSION statement 6-8
Dimensioning, not allowed in
SAVE slatement 6-8
Direct access 6-14
Direct access and ATTDEV
subroutine 6-14
Direct access and the Editor
6-14
Direct access READ statements
6-17
Direct access WRITE statements
6-19
Direct access, IBM compatibility
6-14
Direct access, use of 6-14
DO:
loop index 6-12
loop optimization 2-6, 4 -1
loop optimization, suppress
2-6
loop, one-trip 6-12
loops, implied 6-19
loops, nesting 6-11
statement 6-11
Documents, related 1-2
DOUBLE PRECISION see also
REAL™8
DOUBLE PRECISION data
storage format D-2
DOUBLE PRECISION mode 6-5
Double precision numbers 5-3

Dummy argument arrays, over

a4k word COMMON - 6-6

1 March 1980

Dynamic allocation of local
slorage 2-3

DYNM (compiler option) 2-3

DYNM option, compiler, use of
4-6

E

E input format 6-23
I output format 6-21
ECBs, load into procedure
frame 2-6
ED, defaults B-1
Editor defaults B-1
EDitor, description 1-8
Editor. use of on direct access
files 6-14
Enable compiler concordances
2-7
Enahle compiler cross refer-
ences 2-7
Enable compiler listings 2-5
Enable flagging of undeclared
variables 2-3
Enable global trace 2-6
ENCODE statement 6-20
End of compilation message 2-1
END statement 6-12
END= 6-16
ENDFILE statement 6-26
Ending main program 1-4
Environment:
batch 1-4
interactive 1-4
phantom user 1-4
program, list 1-4
EQUIVALENCE statement 6-8
ERR= 6-16
ERRLIST (compiler option) 2-4
Error:
message, compiler 2-2
messages A-1
messages, compiler A-1
messages, compiler, print
only 2-4
messages, compiler, prinl at
lerminal 2-4
ERRTTY (compiler option] 2-4
Execution defaults B-2
Exit, normal 6-11
Expanded compiler listing 2-4
EXPLIST (compiler option) 2-4
Extended intrinsic functions 7-1
Extended range, optimizalion
2-6
Extensions 1-2
External procedure statements
6-9
EXTERNAL statement 6-9

X-3

F

F input format 6-23

F output format 6-21

FSIOBF COMMON block 6-15

FALSE 5-4

Field descriptor, format 6-20

File specifications, compiler,
table 2-3

File system summary 1-5

File unit usage, compiler 2-12

Floating point skip operations
generate 2-4

Floating point skip operations,
suppress 2-5

Format delimiters 6-20

Format field descriptor 6-20

Format lines, rescanning 6-21

FORMAT statement 6-20

Format, line 5-1

FORMAT, use of parameters not
allowed 6-5

Formals as variables 6-22

Formats in inpul statements,
table 6-23

Formats in output statements,
table 6-21

Formats, memory, FORTRAN
data types D-1

Formatted DECODE statement
G-20

Formatted printer control 6-26

Formatted READ stalement 6-16

Formatted WRITE statement
6-19

Forms management system, inter-
face to 1-7

FORTRAN compiler defaults
B-2

FORTRAN data mode convention,
overriding 6-4

FORTRAN data types, memory
formats D-1

FORTRAN extensions, Prime
1-2

FORTRAN function library 8-1

FORTRAN function reference
8-1

FORTRAN functions 7-1

FORTRAN functions, list 8-2

FORTRAN language elements

5-1

FORTRAN language tutorial
books 1-1

FORTRAN library functions 7-1

FORTRAN library, V-mode 8-1

FORTRAN math subroutines

7-3

FDR™067

% INDEX

FORTRAN mathemalical func-
lions table 1-5
FORTRAN stalements 6-1
FORTRAN under PRIMOS 1-2
FORTRAN unit number, physical
devices, table 6-16
FORTRAN, Prime's, overview
1-1
FP (compiler option) 2-4
FTN [PRIMOS command) 2-1
FTN, defaults B-2
FTN, FORTRAN compiler 2-1
FTNLIB 8-1
Full compiler listing 2-5
Full cross reference 2-7
FULL LIST statement 6-9
Function, structure of 7-1
Function:
FUNCTION:
argumenls 7-2
calls 6-26
calls, optimization 4-4
mode 6-3
maode typing 7-1
reference, FORTRAN 8-1
rules 7-2
statement 6-3, 7-1
subprograms, user-defined 7-1
Functions:
conversion 1-4
extended inlrinsic 7-1
FORTRAN 7-1
FORTRAN library 7-1
FORTRAN, list 8-2
slatement 7-1
trigonometric 8-1

G

G input lormal 6-23

G outpul format 6-21

Generalized subscripts 5-5

Generale debugger code 2-3

Generate floating point skip
operations 2-4

Generate productions code 2-6

Global mode specification 6-5

Global SAVE 6-9

Global trace, enable 2-6

Global trace, suppress 2-6

Global/IMPLICIT conllict 6-5

GO TO, assigned, stalement
6-12

GO TO, computer, statement
6G-12

GO TO, unconditional, state-
ment 6-12

H

H output format g-22

FDR3057

Header statements for sub-
programs G-3

Hollerith constants 5-4

I

linpul format 6-23
I output formal 6-22
I[/0 unit physical device
correspondence, change 6-15
IBM compalibility, direet access
files 6-14
[F statements, oplimization 4-4
IF. arithmelic, stalemenl 6-12
[F, logical vs. arithmetic 4-6
IF, logical, statement 6-12
IFTNLB 8-1
Implementation, over 64K word
COMMON 6-7
Implemented stalements, lisl 6-1
IMPLICIT and intrinsic functions
8-1
IMPLICIT statemenl 6-4
IMPLICIT/global conflict 6-5
Implied DO loops 6-19
In-line comments, use of 3-2
Indention, use of 3-2
Index, DO loop 6-12
INPUT (compiler option) 2-4
Input/output optimization 4-4
Inpulfoutput, for conversion 1-4
Input:
file, compiler 2-4
scale faclors 6-25
specifications, compiler 2-4
Specificalions, compiler 2-10
statements 6-14
statements, formats in, table
6-23
INSER'T see $INSERT
INTEGER see also INTEGER*2,
INTEGER*4
INTEGER mode 6-5
INTEGER*2 see also INTEGER,
INTEGER*4
INTEGER*2 data storage formal
D-2
INTEGER*2 default 2-5
INTEGER*2 mode 6-5
INTEGER*4 see also INTEGER,
INTEGER*3
INTEGER*4 dala storage formatl
D-2
INTEGER*4 default 2-4
INTEGER*4 mode 6-5
Integer:
division optimization 4-6
random number generalor 8-5
sign extension §-1
lruncation §-2

Integers: 5-3
in subroutine calls 2-4
long 5-3
short 5-3
Interactive environmenl 1-4
Interface to assembly language
1-8
Interface to COBOL 1-8
Interface to database manage-
menl system 1-7
Interface to Forms management
system 1-7
Interface to PL/I subsel G 1-8
Interface to PMA 1-8
INTL (compiler option] 2-4
Intrinsic functions and
IMPLICIT 8-1
Intrinsic functions, extended 7-1
INTS (compiler option] 2-5
[tem TRACE statement 6-10

K

Keyboard input, ASCII
characters C-1

L

L input format 6-23
L output format 6-22
Language compatibilily 1-1
Language elements, FORTRAN
5-1
Language interface 1-8
Language, source, conversion
1-2
Legal character set 5-1
Libraries, descriptions 1-6
Library:
calls oplimization 4-5
FORTRAN function 8-1
functions, FORTRAN 7-1
Line format 5-1
LIST:
(COMMON block) 6-6
[compiler option) 2-5
List:
directed character string
input 6-18
directed DECODE statement
6-20
directed delimiters 6-17
directed numerical input 6-18
directed READ statements
6-17
FORTRAN funclions 8-2
statement 6-9
LISTING:
(compiler option] 2.5
(PRIMOS command 242

T March 1980

INDEX X

Listing:
compiler, default 2-5
compiler, enable 2-7
compiler. expanded 2-4
file, compiler 2-5
file, compiler (unit 2) 2-12
file, spooling 2-5
liles, concatenating 2-13
full, compiler 2-5
LOAD, defaults B-1
Load:
ECBs into procedure frames
2-6
sequence, optimization 4-3
Loader:
conservation of base areas 2-3
description 1-6
SEG, defaults B-1
segmented, defaults B-1
Local storage, dynamic
allocation 2-3
Local storage, stalic allocation
2-6G
LOGICAL mode 6-5
LOGICAL, data storage [ormat
D-z
Logical:
constants 5-4
functions, mixed integers in
B-2
[F statement &-12
operators 5-6
shill operator 8-7
vs. Arithmetic IF 4-6
Long and short integers, mixing
8-1

Long integers 3-3

M

Main program, ending 1-4

Math subroutines, FORTRAN
7-3

Mathematical functions,
FORTRAN, table 1-5

Matrix subroutines, table 1-6

Memory allocation, optimization
4-3

Memory formats, FORTRAN dala
types D-1

Message:
end of compilation 2-1
error A-1
error, compiler 2-2, A-2
warning, compiler 2-2

MIDAS see also Multiple Index
Direct Access System

MIDAS, descriptor 1-8

Mixed integers in logical
functions 8-2

Mixed mode arithmetic 6-10

Mixing long and short integers
8-1

1 March 1980

Mnemonic-bit correspondence, A
register 2-11

Mnemonic-bit correspondence, B
register 2-11

Mode:
date 6-5
data see data type
mixing rules 6-11
of function 6-11
specification statement 6-4
specifications, global 6-5
typing, function

7-1

Modular program structure 3-1

Monitoring program control flow
3-2

Multi-dimensioned arrays,
optimization 4-3

Multiple Index Direct Access
System see also MIDAS

N

Nesting DO loops 6-11

Nesting, not allowed in SINSERT
files 6-10

NO LIST statement 6-9

NOBIG (compiler option) 2-5

NODCLVAR (compiler option)
2-5

NODEBUG (compiler option)
2-5

NOERRTTY (compiler option)
2-5

NOFP (compiler option] 2-5

Non-printing ASCII characters
C-2

Normal exit 6-11

NOT truth table 5-6

NOTRACE (compiler oplion] 2-6

NOXREF (compiler option) 2-6

Numerical inpul, list directed
6-18

O

Object:

code generation 2-9

code, default 2-9

file, compiler 2-2

file, compiler (unit 3} 2-12
One-Irip DO loop 6-12
Operands 5-2
Operator priority 5-7
Operators 5-6
Operators, arithmetic 5-6
Operators, logical 5-6
Operators, relational 5-7
OPT (compiler option) 2-6
Optimization 4-1
Optimization of DO loops,

suppress 2-6

X-5

Optimization:
64V-mode COMMON 4-4
DO loops 2-6, 4-1
functions calls 4-4
IF statements 4-4, 4-6
input/outpul 4-4
integer division 4-6
library calls 4-3
load sequence 4-3
memory allocation 4-3
multi-dimensioned arrays 4-3
parameter statements 4-5
statement functions and
subroutines 4-5
statement number 4-2
statemenl sequence 4-5
unconditional 2-6
Options, compiler see also
parameters, compiler
OR truth table 5-6
Order of statements in a
program 5-8
Organization 1-1
Output/input optimization 4-4
Output:
scale factors 6-25
specifications, compiler 2-2,
2-10
statements 6-14
statemenls, formats in, table
6-21
Over 64K word COMMON
blocks 6-6
Over 64K word COMMON,
arrays 6-6
Over 64K word COMMON,
concordance address 6-6
Over 64K word COMMON,
dummy argument array 6-6
Over 64K word COMMON,
implementation 6-7
Over 64K word COMMON, pro-
gramming considerations 6-7
Over 64K word COMMON,
restrictions 6-7
Overriding FORTRAN data mode
convention 6-4
Overview of Prime's FORTRAN
1-1

P

PARAMETER statement 6-5
Parameter: , 5-4
compiler see also oplions,
compiler
compiler 2-2
data mode typing 6-5
not allowed in FORMAT
statement G6-5
statements optimization 4-5
usage 6-5
Parity, ASCII C-1

FDR3057

X INDEX

Partial cross reference 2-7
PAUSE statement 6-13
PAUSE, recovering from 6-13
PBECB (compiler option] 2-6
Peripheral devices with compiler
2-12
Petitio principii see circular
reasoning
PFITNLB 8-1
Phantom user environment 1-4
Physical device FORTRAN unit
numbers, table 6-16
Physical device 1/O unit
correspondence, change 6-15
PL/I subset G, interface to 1-8
PMA see also Prime Macro
Assembly Language
PMA, interface to 1-8
Prime exlension to FORTRAN
1-2
Prime Macro Assembly Language
see also PMA
PRIMOS defaults B-2
PRIMOS command:
BINARY 2-13
CLOSE 2-13
FIN 241
LISTING 2-12
PRIMOS, FORTRAN under 1-2
Print compiler error messages al
terminal 2-4
Print only error messages 2-4
PRINT statement 6-15
Printer control, formatted 6-26
Printing ASCII characters -3
Priority of operators 5-7
Procedure [rames, load ECBs
inlo 2-6
PROD (compiler option] 2-6
Production code, generate 2-6
Program
compositions 5-7
conlrol flow, monitoring 3-2
conversion 1-2
development 1-3
environments, list 1-4
order of statements in 5-8
structure, modular 3-1
Programming considerations,
over 64K word COMMON 6-7
Proof by assumption see petitio
principii

R

R-mode vs. V-mode compilation
4-4

Random numbe
integer 8-5

rgeneralor,

|
Random number generator, real
8-6

FDR3057

Range of constants 5-2
READ:
binary, statement 6-17
direcl access, stalemenls 6-17
formaltted, statement 6-16
list directed, statement 6-17
stalemenls 6-16
REAL see also REAL*4
REAL mode 6-5
Real numbers 5-3
Real random number generator
8-6
REAL*4 see also REAL
REAL*4 data storage lormat -2
REAL*4 mode 6-5
REAL*8 see also DOUBLE
PRECISION
REAL*8 mode 6-5
REC= 6-17, 6-19
Record:
size over 128 words 6-15
size, changing 6-15
size, default 6-15
Recovering from PAUSE 6-13
Recursive subroutines 6-9
Related documents 1-2
Relational operators 5-7
Relative address code 2-9
Repetition, field descriptor 6-20
Representation, ASCII character
slrings 5-4
Representation, complex numbers
5-4
Representation, double precision
numbers 5-3
Rescanning format lines 6-21
Resources, system, list 1-5
Restrictions on over 64K word
COMMON 6-7
RETURN statemenl 6-14
REWIND statement 6-26
Rules for functions 7-2
Rules for subroutines 7-3
Rules for variables 5-4
Rules, mode mixing 6-11
Run-time statements 6-9

S

SAVE (compiler option) 2-6

SAVE stalement G-8

SAVE statemenl, dimensioning
not allowed in 6-8

SAVE, global 6-9

Scale lactors 6-25

SEG loader defaults B-1

SEG ulility, deseription 1-6

Segment-spanning arcays 2-2

Segmented address code 2-9

Segmented loader defaults B-1

X-6

Sequence numbers 5-2
Selting A regisler 2-9
Setting B register 2-9
Short and long integers, mixing
8-1
Short call subroutines 8-1
Short cross reference 2-7
Short integers 5-3
Sign extension, integer 8-1
Skip operations, floating point,
generate 2-4
Skip operations, floating point,
suppress 2-5
SOURCE (compiler option) 2-6
Source:
file, compiler 2-6
file, compiler (unit 1) 2-12
l;unmluge conversion 1-2
level dubugger 3-1
Spacing, using ol 3-2
Specification statements 6-4
Spooling the listing file 2-5
Statement:
data definition 6-9
functions 7-2
functions and subroutine
oplimization 4-5
lines 5-1
number, optimization 4-2
sequence optimization 4-5
Stalements: 6-1
assignmenl 6-10
coding 6-19
compilation 6-9
control 6-11
device control 6-28
External procedure 6-9
grouped, list 6-2
header, for subprograms 6-3
implemented, list 6-1
inpul 6-14
arder of in programs 5-8
output 6-14
READ 6-16
run-lime 6-9
specilication 6-4
sltorage 6-5
WRITE 6-18
Static allocation of local storage
2-6
STDOPT (compiler option) 2-6
STOP statement 6-14
Storage formal:
data, ASCII D-3
data, CHARACTER D-3
data, COMPLEX D-3
data, DOUBLE PRECISION
D-2
data, INTEGER*2 D-2
data, INTEGER*2 D-2
data, LOGICAL D-2
data, REAL*4 D-2
Storage slatemenls 6-5

1 March 1980

INDEX X

Storage, ANSI standard D-1
Storage, local, dynamic,
allocation 2-3
Storage. local, static allocation
2-6
Strategy, coding 3-1
Structure of function sub-
program 7-1
Structure of subroutine sub-
programs 7-3
Structure, program, modular 3-1
Subprogram. block data 6-3
Subprograms, functions, user-
defined 7-1
Subprograms, header statements
for 6-3
SUBROUTINE statement -3,
7-3
Subroutine:
arguments 7-3
ATTDEV 6-15
calls 6-27
calls, integers in 2-4
rules 7-3
subprogram, structure of 7-3
Subroutines:
$X versions 8-1, 7-2
applicatior: library 7-3
conversion 1-4
FORTRAN math 7-3
malrix, table 7-3
PRIMOS svstem 7-3
recursive 6-9
short call 8-1
user-defined 7-3
Subscripts:
generalized 35-5
maximum number of 5-5
Suppress:
cross reference 2-6
debugger code generation 2-5
DO loop optimization 2-6
flagging of undeclared
variables 2-5
{floaring point skip operations
2-5
alobals trace 2-6
printing of compiler error
messages 2-5
Syntax:
checking, compiler 3-2
compiler 2-1
System:
constants B-1
defaults B-1
resources 1-5

T

T input format 6-23
T output formal 6-22
Terminal defaults B-1

I March 1980

Trace:
alobal, compiler 3-3
elobal. enable 2-6
alobal. suppress 2-6
TRACE:
{compiler option) 2-6
area, statement 6-10
item, statements 6-10
slalements, use of 3-2
use with COMO 6-10
Trigonomeltric funclions 8-1
TRUE 5-4
Truncation, integer 8-2
Truth tables 5-6
Tutorial books, FORTRAN
language 1-1
Type. data see also data mode

Types, data 6-5

U

Inconditional GO TO statement
6-12

Unconditional optimization 2-6

UNCOPT (compiler option) 2-6

Undeclared variables, enable
flageing 2-3

Undeclared variables, suppress
[lagging 2-5

User-defined function subpro-
arams 7-1

User-defined subroutines 7-3

V

V-mode FORTRAN library 8-1

V-mode vs. R-mode compilation
4-4

Value. call by 6-3

Variable rules 5-4

Variables 5-4

Variables, formats as 6-22

W

WARNINGS 2-2

WRITE:
binary, statement 6-19
direct access, statemenlts 6-19
formatted, statement 6-19
sltatlements 6-18

X, Y,

X input formal §-23

X output format 6-22
XREFL (compiler option)
XREFS [compiler option)
Z (in B format) 6-24

e S
I
SN |

FDR3057

	Front Cover
	Flyleaf
	i
	ii
	Title Page
	iii
	Copyright
	iv
	Contents
	v
	vi
	Section I
	Overview
	Chapter 1
	Overiew of Prime's FORTRAN
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	Section II
	Language-Specific System Information
	Chapter 2
	Compiling
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	Chapter 3
	Debugging
	3-1
	3-2
	3-3
	Chapter 4
	Optimization and other helpful hints
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	Section III
	Language Reference
	Chapter 5
	FORTRAN language elements
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	Chapter 6
	FORTRAN statements
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	Chapter 7
	FORTRAN function and subroutine structure
	7-1
	7-2
	7-3
	7-4
	Chapter 8
	FORTRAN function reference
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	Section IV
	Appendices
	Appendix A
	Error messages
	A-1
	A-2
	A-3
	A-4
	A-5
	Appendix B
	System defaults and constants
	B-1
	B-2
	Appendix C
	ASCII character set
	C-1
	C-2
	C-3
	Appendix D
	Prime memory formats of FORTRAN data types
	D-1
	D-2
	D-3
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7

