
Prime Computer, Inc.
Reference Guide
FDR3057-101B

FORTRAN
Revision 17

The FORTRAN Reference Guide

" •

f-

*

FORTRAN
Reference Guide

by Anthony R. Lewis

- with Update Pages for Rev. 10. July 1082

bv Carol A. Prvor

COPYRIGHT INFORMATION -1
The information in this document is subject to change without notice and should not be
construed as a commitment by Prime Computer Corporation. Prime Computer Corpora
tion assumes no responsibility for any errors that may appear in this document.
The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

Copyright © 1982 by
Prime Computer, Incorporated

500 Old Connecticut Path
Framingham, Massachusetts 01701

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.

PRIMENET, RINGNET, and THE PROGRAMMER'S COMPANION are trademarks of Pri me
Computer, Inc.

PRINTING HISTORY - FORTRAN Reference Guide

Edition Date Number Documents Rev

'First Edition November 1977 PDR3057 14
'Update July 1978 PTU2600-047 15
'Second Edition January 1979 FDR3057 16.3
Third Edition March 1980 FDR3057 17.2
Update Package 1 May 1981 COR3 057-001 18.1
Update Package 2 July 1982 COR2057-002 19.0

These editions are out of print.

HOW TO ORDER TECHNICAL DOCUMENTS

U.S. Customers
Software Distribution
Prime Computer, Inc.
1 New York Ave.
Framingham, MA 01701
(617) 879-2960 x2053, 2054

Customers Outside U.S.
Contact your local Prime
subsidiary or distributor.

Prime Employees
Communications Services
MS 15-13, Prime Park
Natick, MA 01760
(617)655-8000, X4837

INFORMATION Systems
Contact your Prime
INFORMATION system dealer.

CONTENTS

PART I — OVERVIEW

OVERVIEW OF PRIME'S FORTRAN
Introduction 1-1
FORTRAN Under PRIMOS 1-2
System Resources Supporting FORTRAN 1-5

PART II — LANGUAGE-SPECIFIC SYSTEM INFORMATION

COMPILING
Introduction 2-1
Using the Compiler 2-1
End of Compilation Message 2-1
Compile Error Messages 2-2
Prime FORTRAN Compiler Parameters 2-2

DEBUGGING
Introduction 3-1
Source Level Debugger 3-1
Coding Strategy 3-1
Compiler Usage 3-2

OPTIMIZATION AND OTHER HELPFUL HINTS
Introduction 4-1
DO Loops 4-1
Statement Numbers 4-2
Multi-Dimensioned Arrays 4-3
Load Sequence and Memory Allocation 4-3
Function Calls 4-4
V-Mode vs. R-Mode Compilation 4-4
64V-Mode Common 4-4
IF Statements 4-4
Input/Output 4-4
Statement Sequence! 4-5
Parameter Statements 4-5
Inefficient Library Calls 4-5
Statement Functions and Subroutines 4-5
Integer Divides 4-0
Logical vs. Arithmetic IF 4-0
Use of the Compiler's-DYNM Option 4-0
Conclusion 4-7
Request for Contributions to this Section 4-7

P A R T I I I — L A N G U A G E R E F E R E N C E J

FORTRAN LANGUAGE ELEMENTS
Legal Character Set 5-1
Line Format 5-1
Operands 5-2
Generalized Subscripts 5-5
Operators 5-6
Program Composition 5-7

FORTRAN STATEMENTS
Implemented Statements 6-1
Header Statements for Subprograms 0-3
Specification Statements 0-4
Storage Statements 6-5
External Procedure Statements 6-9
Compilation and Run-Time Control Statements 6-9
Assignment Statements 6-10
Control Statements 0-11
Input/Output (I/O) Statements 0-14
Coding Statements 0-19
Format Statements 0-20
Device Control Statements 0-20
F u n c t i o n C a l l s 6 - 2 6 i ^ ^
Subroutine Calls 0-27

FORTRAN FUNCTION AND SUBROUTINE STRUCTURE
Functions 7-1
Subroutines 7-2

FORTRAN FUNCTION REFERENCE
FORTRAN Function Library 8-1

APPENDICES

COMPILER ERROR MESSAGES

SYSTEM DEFAULTS AND CONSTANTS

ASCII CHARACTER SET
PRIME Usage C-l
Keyboard Unit C-l

PRIME MEMORY FORMATS OF FORTRAN DATA TYPES
Introduction D-l
Data Types D-2

OVERVIEW
r

~

Overview of
Prime's FORTRAN

18

INTRODUCTION
This document contains the information specific to Prime's FORTRAN IV language and its
compiler (FTN). General program development information: getting on the system, entering
programs, loading, and execution are treated in the Prime User's Guide. We assume that you
have read the Prime User's Guide and are familiar with the FORTRAN language, but not neces
sarily with its implementation on a Prime computer. Users unfamiliar with the language should
read one of the commercially available instruction books; two examples are:

McCracken, Daniel D., A Guide to FORTRAN IV Programming,
John Wiley and Sons, Inc.
Organick, Elliott I., A FORTRAN IV Primer, Addison-Wesley
Publishing Company

The current definitive standard for the FORTRAN IV language is the American National
Standards Institute publication X3.9-1966 (USA Standard FORTRAN).

This version

This book documents Prime's FORTRAN IV and its compiler (FTN) at software revision level
17 (Rev. 17). Together with our new book, the Prime User's Guide, it replaces the FORTRAN
Programmer's Guide, FDR3057. The language-specific material in the Programmer's Guide has
been restructured in this language reference guide, while language-independent material (on
PRIMOS utilities and commands) has been expanded and placed in the Prime User's Guide.
(Details on the use of subroutines remain in the Subroutine Reference Guide).
This restructuring represents another stage in the continuing evolution of Prime's documents.
First, it reflects the growing number of Prime's compiled languages (FORTRAN IV, FORTRAN
77, COBOL, PL/I subset G, PASCAL and RPG II, as of Rev. 18). Second, it points up the compati
bility, at object code level, of program modules written in these languages. For example, a FOR
TRAN subroutine can be called from an RPG program module, or a PL/I subset G subroutine
from a COBOL program. Third, it recognizes that program development is basically identical in
all high-level languages (with a few exceptions, such as loading libraries). Thus, applications
programmers can use the Prime User's Guide as their tutorial for PRIMOS, and the language
reference guides, such as this book, as reference works.

Organization
The guide is composed of three parts:

Part I. An introductory section including an overview of FORTRAN as it is
implemented on the Prime computer. This includes Prime extensions
to the language, supporting utilities, systems, and software, plus
where to find this information (Section 1).

Part II. Language-specific system information. This part of the book
includes complete details on the use of the FORTRAN IV compiler,
FTN (Section 2). Suggestions to the programmer for debugging (Sec-

1 May 1981 1-1 FDR3057

1 OVERVIEW OF PRIME'S FORTRAN

Part III.

Appendices

tion 3) and optimization (Section 4) are presented along with the
locations of additional information.
FORTRAN language reference. Sections 5-8 form a reference for
the FORTRAN language as implemented on Prime computers. The
Prime extensions to the standard language are given along with
examples of their usage.
A complete list of compiler error messages and their meanings
(Appendix A); system defaults and constants (Appendix B); ASCII
character set (Appendix C); and FORTRAN data type storage
(Appendix D).

Related documents
The following documents contain detailed reference information on the PRIMOS system and
utilities.

Operating System Reference
Prime User's Guide
PRIMOS Commands Reference Guide
PRIMOS Subroutines Reference Guide

Software Subsystem Reference
The FORTRAN Programmer's Companion
The New User's Guide to EDITOR and RUNOFF
LOAD and SEG Reference Guide
Source Level Debugger Guide
MIDAS User's Guide
Reference Guide for DBMS Schema DDL
FORTRAN Reference Guide for DBMS
FORMS Programmer's Guide

FORTRAN UNDER PRIMOS

Program conversion
There are a number of factors which musl be taken into account when converting FORTRAN
programs from one computer system to another. These are the language statements, extensions,
input/output, functions, subroutines, and control flow. Any particular program may have
special conversion needs, but these are the major areas to consider.
Language: Make certain that all statements perform the same operations on both systems. The
major sources of possible incompatibility are device and input/output statements. The 1966
standard FORTRAN does not fully describe certain statements such as ENDFILE or REWIND;
consequently, their exact performance is installation-dependent. Prime's FORTRAN supports
both the ANSI and IBM formats for direct access READ and WRITE statements. Levels of
nesting in DO loops and IF statements will present no problems as there is no syntactical limit
on such nesting in Prime FORTRAN. Similarly, there is no syntactical limit lo the number of
statement labels in computed GO TO statements.
Extensions: Extensions to standard FORTRAN which the user should inspect are:

• Use of the SINSERT command for file insertion at compilation
• B Formal
• TRACE instruction for debugging
• List-directed input/output
. Direct file access READ/WRITE statements
• Long integers

18

FDR3057 1-2 1 May 1981

OVERVIEW OF PRIME'S FORTRAN 1

R - IDENTITY

OBJECT ^af
FILE

LOAD
LOADER

SAVED
MEMORY

IMAGE FILE

EXECUTE ON
P300ANDUP

FORTRAN
SOURCE

PROGRAM

FTN
FORTRAN
COMPILER

COMPILER
OPTION

32R OR 64R

COMPILER
OPTION

64V

LISTINGS AND
CONCORDANCES

V- I D E N T I T Y

OBJECT
FILE

SEG
LOADER

SEGMENTED
RUNFILE

EXECUTE ON
P350 AND UP

Figure 1-1. Sequence of FORTRAN Program Development

i March W80 1-3 FDR3057

1 OVERVIEW OF PRIME'S FORTRAN

• Parameters
• IMPLICIT specification
• Subprogram structure
• Generalized subscripting

Input/Output: FORTRAN logical unit numbers must agree with I hose given in Section 0 of this
document (or such others as are established by the system administrator). PRIMOS is an inter
active multi-user system, all users have access lo disk files. I Ise of peripheral storage devices is
obtained by assigning the device lo the user after which file operations may be performed.
Functions: Prime supplies a large number of the normal mathematical functions plus a sel ol
Boolean (logical) functions. These are listed in Section 8. The user should check these to be sure
all functions in I he original source; program are implemented under PRIMOS, It is unlikely that
the average programmer will be using functions not on this list. User-defined functions should
be written as specified in Section 7.
Subroutines: Inasmuch as all operating system or file system calls are installation-dependent,
all such calls musl be replaced by their PRIMOS equivalents. All subroutines will be found in
Reference Guide, PRIMOS Subroutines. User-defined subroutines should be written to the
specifications in Section 7.
Control flow: To insure an orderly return from the main program lo the PRIMOS level, the last
logical statemenl ol a main program must be

CALL EXIT
This is analogous to the RETURN statement, which is ihe lasl logical statemenl of a function
subprogram or subroutine.
Programs executing in Ihe R-identify may be "chained" by use of the RESU$$ subroutine des
cribed in Subroutines Reference Guide.

Program environment
Under PRIMOS, FORTRAN programs may execute in one of three environments:

• Interactive
• Phantom user
• Batch

Interactive: Program execution is initiated directly by the user. The terminal is dedicated to the
program during execution. The program will accept input from the terminal and will print at the
terminal any output specified by the program as well as user- or system-generated error
messages. This environment is the one most often used. Major uses are:

• Program development and debugging.
• Programs requiring short execution time.
• Data entry programs such as order entry, payroll, etc.
• Interactive programs such as the Editor, etc.

Phantom user: The phantom environment allows programs to be executed while "disconnected"
from a terminal. Phantom users accept input from a command file instead of a terminal; output
directed to a terminal is either ignored or directed to a file.
Major uses of phantoms are:

• Programs requiring long execution time (such as sorts).
• Certain system utilities (such as line printer spooler).
• Freeing terminals for interactive uses.

Batch jobs: Since the number of phantom users on a system is limited, phantoms are not always
available. The Batch environment allows users to submit non-interactive command files as
Batch jobs at any time. The Batch monitor (itself a phantom) queues these jobs and runs them,

F D I \ 3 0 5 7 1 - 4 1 M a r c h 1 9 8 0

* >

OVERVIEW OF PRIME'S FORTRAN 1

one to six at a time, as phantoms become free. (See the Prime User's Guide for details).

File system summary
PRIMOS allows the user to access up to 128 files at one time. These disk files may be created,
modified and deleted through the use of the Applications Library subroutines and the file
management subroutines of the Operating System. Fileunits 1-10 opened by these subroutines,
may be accessed by FORTRAN I/O statements such as READ, WRITE, ENCODE. DECODE.
See Section 0 for a complete discussion of these commands.

SYSTEM RESOURCES SUPPORTING FORTRAN
There are a large number of libraries and utilities in PRIMOS supporting the use of FORTRAN
on the Prime computer. A brief description of some of the major ones follows.

r Table 1-1. FORTRAN Mathematical Functions
Data Mode of Argument and Value

Single- Double-
Operation Integer Precision Precision Complex

Sine n/a SIN DSIN CSIN
Cosine n/a COS DCOS CCOS
Arctangent n/o ATAN DATAN
Arctangent of ratio n/a ATAN 2 DATAN2
Hyperbolic tangent n/o TA N H

Log-base e (Ln) n/a ALOG DLOG CLOG
Log-base 2 n/a DLOG2
Log-base 10 n/a ALOG10 DLOG10
Exponential n/a EXP DEXP CEXP

Square root n/a SQRT DSQRT CSQRT
Absolute value IABS ABS DABS CABS
Remainder (modulus) MOD AMOD DMOD n/a
Truncation to n/a AINT DINT n/a

Integral value
Positive difference IDIM DIM n/a
Magnitude of first ISIGN SIGN DSIGN n/a

no. times sign
of second

Complex conjugate n/a n/o n/a CONJG
Maximum of List AMAXO(l) AMAX1 DMAX1 n/a

MAXO MAX1 (lj n/a
Minimum of List AMINO (7) AMIN1 DMIN1 n/a

MINO MINI [2] n/a

No tes
n/d — Not applicable.
1 — Value mode is sir gle-precision.
2 — Value mode in in eger.

1 March 1980 1-5 1-DR3057

1 OVERVIEW OF PRIME'S FORTRAN

Libraries
A complete treatment of all library and system subroutines is in Reference Guide, PRIMOS
Subroutines. A summary of the FORTRAN mathematical functions is given in Table 1-1. There
are also FORTRAN functions for the Boolean (logical) operations of AND, OR, XOR, NOT,
right shift, right truncate, left shift, and left truncate. Conversion between data modes is
supported by a set of conversion functions. For more advanced mathematical usage, a matrix
library is provided (See Table 1-2 for a summary).

Table 1-2. Matrix Operations Subroutines
Data Mod b of Matrix Elements

Single- Double-
• Operation Integer Precision Complex Precision

Setting matrix to identity matrix* IMIDN MIDN CMIDN DMIDN
Setting matrix to constant matrix IMCON MCON CMCON DMCON
Multiplying matrix by a scalar IMSCL MSCL CMSCL DMSCL
Addition of matrices IMADD MADD CMADD DMADD
Subtraction of matrices IMSUB MSUB CMSUB DMSUB
Matrix Multiplication IMMLT MMLT CMMLT DMMLT
Calculating transpose matrix* IMTRN MTRN CMTRN DMTRN
Calculating adjoint matrix* IMADJ MADJ CMADJ DMADI
Calculating inverted matrix* n/a MINV CMINV DMINV
Calculating signed cofactor* IMCOF MCOF CMCOF DMCOF
Calculating determinant* IMDET MDET CMDET DMDET
Solve a system of linear n/a LINEQ CLINEQ DLINEQ

equations
Generate permutations PERM
Generate combinations COMB

Notes
n/a — Not applicable
* — For square matrices only

Compiler
Prime's FORTRAN IV compiler operates on FORTRAN source code lo generate highly opti
mized object code. The user has the option, at compilation time, of generating object code for
execution in either the R-identity or V-identity. Additional options control I/O specifications,
listings, concordances, memory usage, and other useful operations. The compiler is described
in Section 2.

Loader
The R-identity loader combines into an executable program, program modules, subroutines,
and libraries that have been compiled separately. It handles symbol cross references and
module linkages. Maps of the load are available at the terminal or written into files. The loader
is described in the Prime User's Guide.

SEG utility
SEG is the V-identity program loading and execution utility. It combines separately compiled
program modules, subroutines, and libraries into an executable program, (see the Prime User's
Guide). Program modules can be up to 64K words long. All memory management, symbol

FDW3057 1-6 1 March 1980

OVERVIEW OF PRIME'S FORTRAN 1

r

tables, linkages, etc., are handled by SEG's loader. Various types of loadmaps may be obtained.
The SEG utility has many functions, including loading shared procedures. These are described
in LOAD and SEG Reference Guide.

Editor
Prime's text editor is a line-oriented editor enabling the programmer to enter and modify source
code and text files. Information for these purposes is in the Prime User's Guide; a complete
description of the Editor is in The New User's Guide to EDITOR and RUNOFF.

Multiple index direct access system (MIDAS)
MIDAS is a system of interactive utilities and high-level subroutines enabling the use of index-
sequential and direct-access data files at the application level. Handling of indices, keys,
pointers, and the rest of the file infra-structure is performed automatically for the user by
MIDAS. Major advantages of MIDAS are:

• Large data files may be constructed.
• Efficient search techniques.
• Rapid data access.
• Compatibility with existing Prime file structures.
• Ease of building files.
• Primary key and up to 19 secondary keys possible.
• Multiple user access to files.
• Data entry lockout protection.
• Partial/full file deletion utility (KIDDEL).

18 I Complete documentation is MIDAS User's Guide.

Database Management system (DBMS)
The FORTRAN interface to the DBMS includes two major processors and their respective lang
uages: the FORTRAN Subschema Data Definition Language (DDL) Compiler and the
FORTRAN DATA Manipulation Language (DML) Preprocessor.
The application programmer's 'view' of a schema is written in the FORTRAN Subschema DDL.
The Subschema Compiler translates the DDL into an internal, tabular form called the
subschema table which is used by the DML Preprocessor.
Commands for locating, retrieving, deleting, and modifying the contents of a database are
written in the FORTRAN DML. These commands are interspersed with FORTRAN statements
in the application source program and translated into FORTRAN declarations and statements
by the FORTRAN DML Preprocessor. The output of the preprocessor is the source input for the
FORTRAN compiler.
See: Reference Guide For DBMS Schema Data Definition Language (DDL), and the FORTRAN
Reference Guide For DBMS.

Forms management system (FORMS)
The Prime Forms Management System Mangement System (FORMS) provides a convenient
and natural method of defining a form in a language specifically designed for such a purpose.
These forms may then be implemented by any applications program which uses Prime's Input-
Output Control System (IOCS), including programs written in FORTRAN. Applications
programs communicate with the FORMS through input/output statements native to the host
language. Programs that currently run in an interactive mode can easily be converted to use
FORMS.
FORMS allows cataloging and maintenance of form definitions available within the computer
system. To facilitate use within an applications program, all form definitions reside within a

1 M a y 1 9 8 1 1 - 7 F D R 3 0 5 7

I OVERVIEW OF PRIME'S FORTRAN

centralized directory in Ihe system. This directory, under control of the system administrator,
may be easily changed, allowing the addition, modification, or deletion of form definitions.
FORMS is device independent. If certain basic criteria are met, any mix of terminals attached to
the Prime computer may be used with the FORMS system. Terminal configuration is governed
by a control file in the centralized forms directory. This file is read by FORMS at run-time to
determine which device driver to use, depending on the user terminal type. This means that
multiple terminal types may be driven by the same applications program without change.
Certain terminal types are supported by FORMS as released by Prime. Should the user have
another terminal capable of supporting FORMS, all that need be done is to write a low-level
device driver for the terminal and incorporate it into the FORMS run-time library. Details are in
FORMS Programmer's Guide.

Language interfaces
Under the PRIMOS operating system, FORTRAN programs may call or be called by PMA
(Prime Macro Assembly) language programs. FORTRAN subroutines may be called from PL/I
subset G programs; PL/I subset G subroutines may be called from FORTRAN programs; and
FORTRAN subroutines may be called from COBOL programs. Details are in the PMA Program
mer's Guide, The COBOL Reference Guide and the PL/I subset G Reference Guide.

F D R 3 0 5 7 1 - 8 * M l , y w m

LANGUAGE -
SPECIFIC
SYSTEM
INFORMATION

*

Compiling

INTRODUCTION

18

r
18

18

Prime's FORTRAN Compiler; a one-pass compiler, produces highly-optimized code and is
supported by ex-tensive function and subroutine libraries to do file-handling, and both mathe
matical and logical operations.
Source programs must meet the requirements of Prime FORTRAN as specified in this manual.
The compiler generates object code for either the R-identity or V-identity, R-identity code is
loaded with Prime's Linking Loader (LOAD), V-identity code is loaded with Prime's
segmented-addressing utility (SEG). These loaders are described in the Prime User's Guide and
in the LOAD and SEG Reference Guide. Segmented-addressing code can be executed on Prime
50 Series computers. In the V-identity, special code can be generated for use by the source level
debugger (DBG) described in the Source Level Debugger Guide.

USING THE COMPILER
The FORTRAN Compiler is invoked by the FTN command to PRIMOS:

FTN pathname [-options]

pathname The pathname of the FORTRAN source program file.
options The mnemonics for the options controlling compiler functions such

as I/O device specification, listings, and others.
All mnemonic options must be preceded by a dash "-". The name of the source program file
must be specified as the first expression following FTN. For example,

OK, FTN TEST1 -XREFL -64V -LISTING SPOOL
The meanings of the options will be discussed later in this section.

END OF COMPILATION MESSAGE
After the compiler has completed a pass of the specified input file, and generated object code
and listing output to the devices specified by the option list, it prints one End of Compilation
message at the user's terminal after each END statement encountered.
The format of the compiler message is:

xxxx ERRORS [<yyyyyy>FTN-REVzz.z] w WARNINGS
xxxx The number of compilation errors; 0000 indicates a successful

compilation.
Program module identification:
.MAIN, for a main program,
.DATA, for a BLOCK DATA subprogram,
the program entry name (up to 0 characters) for a subroutine or
function.

yyyyyy

1 May 1981 2-1 FDR3057

2 COMPILING

zz.z
w

The PRIMOS revision number.
The number of warnings. If only 1 warning, the final S is not printed.
w WARNINGS does not appear if there are no warning messages.

Example:
0000 ERRORS [<.MAIN.>FTN-REV18.1]

indicates the successful compilation of a main FORTRAN program by the compiler. After com
pilation of all routines in the source file, control returns to PRIMOS.

COMPILE ERROR MESSAGES
The general format of the error message is:

**** LINE nnnn [context] name - message

nnnn The source line number that the statement in error started on. All
lines read from an insert file have the same source line number as the
line with the $INSERT command on it.
If an error is detected in an EQUIVALENCE statement, the word
'EQUIVALENCE' is substituted for 'LINE nnnn'.

context The last 1-10 nonblank characters processed by the compiler before
detecting the error. This field can be used to isolate the position in the
statement that error occurs.

name If the error is directly related to the misuse of a specific name, that
name will be included in the error message. Otherwise, the field will
be omitted.

message A message up to 20 characters in length describing the error. If the
message is a warning, the word WARNING will be part of the
message. A list of all messages is given in Appendix A. An ERROR
message means the program did not compile; a WARNING message
means the program did compile, but not necessarily the way you
thought it would.

Example:
**** LINE 0010 [WRUT] UNRECOGNIZED STATEMENT

Note that the name field has been omitted.

PRIME FORTRAN COMPILER OPTIONS
All options are preceded by a dash, "-", in the command line. Options that are the PRIME-
supplied default options (i.e., those that need not be included) are indicated. The system admin
istrator may have changed thedefaults; if so, the programmer should obtain alist of the installa
tion-specific defaults. (See figure 2-1).
▶ B I G
Treats all dummy arrays as arrays that span segment boundaries and also sets the compiler to
produce 64V mode object code. If a'dummy argument array may become associated with an
array spanning a segment boundary (through a subroutine CALL statement or function refer
ence) the compiler must be aware of this by including BIG in the option list. The code generated
here will work whether or not the array actually spans a segment boundary. See also NOBIG,
64V. See Section 6 for more information on this requirement.

BINARY
pathname
YES
NO

Specifies the binary (object) output file. If pathname is given, then that will be the name of the

FDR3057 2-2 1 May 1981

COMPILING 2

18

r

18

18

r

binary file. If YES is used, the name of the binary file will be PROGRAM.BIN (where PRO
GRAM.FTN is the source filename). If NO is used, then no binary file is created. Omitting the
parameter is equivalent to the inclusion of -BINARY YES. (See Table 2-1.)

▶ D C LVA R
Flags undeclared variable. If included in the option list, the compiler will generate an error
message when a variable is used in the program, but not included in a header, specification,
storage, or external statement. The message will be generated once per undeclared variable. See
NODCLVAR.
▶ DEBASE
Conserves Loader base areas. When enabled, it reduces the sector zero requirements of large
programs. The compiler generates double-word memory reference instructions and uses the
second word as an indirect link for all references to the same item within the relative reach. Use
of this option reduces sector zero usage by 70% to 80%. Programs compiled with this option can
be loaded only in the relative addressing modes (32R or 04).
▶ D E B U G
Produces code allowing full use of the source level debugger (DBG). Modules compiled with
this option accept statement breakpoints from the debugger; the debugger recognizes their
statement numbers and source line numbers. The code so generated is slower and more space-
consuming; interstatement optimization is turned off. For 04V mode only. See NODEBUG,
PROD.

▶ D Y N M
Enables local storage in Stack Frame (Prime 50 Series). Allows dynamic allocation of local
storage and also sets the compiler to generate 04V mode object code. The DYNM option allows
better memory utilization in the 04V mode. It also allows the creation of recursive FORTRAN
subroutines (subroutines which call themselves). See SAVE, 64V.

Table 2-1. Compiler File Specifications

Compiler
Mnemonics INPUT or SOURCE LISTING BINARY

pathname First looks for file
named pathname
.FTN; if not found
then looks for file
named pathname as
source file

opens file named
pathname as listing
file

opens file named
pathname as
(object) file.

YES not applicable uses default filename
for listing file.
PROGRAM.LIST

uses default file
name for binary
file. PROGRAM.BIN

NO not applicable no listing file. no listing file.
T T Y compiles

program as
entered from the
terminal.

prints listing on user
terminal.

not applicable

SPOOL not applicable spools listing directly
to line printer.

not applicable

option
not
invoked

source filename must
be first option
after FTN command.

same as NO same as YES

1 May 1981 2-3 FDR3057

2 COMPILING

To use other peripheral devices such as magnetic tape, card reader, or paper tape punch/reader
for file location, see Table 2-2 for A- and B-register settings.

▶ ERRLIST
Prints only error messages in the listing file. See EXPLIST, LIST.

Note
This option has no effect unless an output device/file is speci
fied using LISTING.

ERRTTY Default
Prints error messages at the user terminal. The normal system default causes each statement
containing an error to be printed at the user terminal. This feature is especially useful when a
corrected program is being recompiled, to confirm that the errors have been properly corrected.
See NOERRTTY.
▶ EXPLIST
Prints' full listing in the listing file. The full listing consists of an assembly language type list
ing, the source statements (with line numbers), and error messages. See ERRLIST, LIST.

Note
This option has no effect unless an output device/file is speci
fied using LISTING.

▶ F P
Generate instructions from the floating-point skip set when testing the result of a floating-point
operation.

▶ F R N
Causes all single-precision numbers (REAL*4) to be rounded each time they are moved from a
register to main storage. The methods of rounding is: if the last mantissa bit is 1, add a 1 to the
second-to-last bit and set the last bit to 0. This rounding reduces loss of accuracy in low-order
bits when many calculations are performed on the same number. This slightly increases execu
tion time and should be used only if maximum accuracy is a major consideration. This option
has no effect on double-precision numbers. See NOFRN.
▶ INPUT pathname
Specifies the pathname of the input source program (See Table 2-1). This option must not be
used if the source filename immediately follows the FTN command; otherwise, it must be
included in the option list. See SOURCE

▶ I N T L
Long integer default. Sets the long integer (INTEGER*4) as the default for the INTEGER state
ment instead of the short integer (INTEGER*2). The normal INTEGER data type in Prime FOR
TRAN is a 16-bit word. A 32-bit integer data type is available through the use of the
INTEGER*4 statement.
The long integer default option is used to simplify conversion of extant FORTRAN programs to
Prime computers. When this is enabled all variables, arrays, and functions explicitly or
implicitly specified as INTEGER will be 32-bit integers. All integer constants will be treated as
32-bit integers. Only names specifically appearing in INTEGER*2 statements will be 16-bit
integers. The 32-bit integer has a greater range than the 16-bit integer (-2147483648 to
2147483647 vs. -32768 to 32767). The 32-bit integer has the same storage requirement as the
REAL*4 (REAL) data type. See INTS.

18

FDR3057 2-4 1 May 1981

COMPILING 2

CAUTION
FORTRAN requires that the type of actual argument in a func
tion reference of CALL statement must agree with the corre
sponding dummy argument in the referenced subprogram. A
subprogram expecting a long integer must NOT be called with a
short integer (and vice versa). Most Prime-supplied sub
routines expect short integer arguments. Care should be taken
when calling these routines (e.g., RESU$$) in a program
compiled with the LONG INTEGER default options.

Example:
CALL RESU$$ ('AUDIT _YEAR\ INTS{10))

INTS (long-integer) is a built-in function that converts its argu
ments to a short integer. If the INTS conversion functions are
omitted, the integer constants are compiled as long integers,
providing INTL is included in the parameter list. Do not confuse
the function INTS (long-integer) with the compiler parameter
INTS.

INTS Default
Short integer default. Sets the INTEGER default to INTEGER*2 rather than INTEGER*4. See
INTL.

LIST Defaultr Print source listing. Prints a listing of the source statements (with line numbers) and error
messages in the listing file. See ERRLIST, EXPLIST.

Note
This option has no effect unless an output device/file is speci
fied using LISTING.

LISTING

Specifies the listing device/filename:

18
pathname
YES

NO
TTY
SPOOL

~

Opens this file for the listing.
Uses the default name for the listing file PROGRAM.LIST (where
PROGRAM.FTN is the source).
No listing file is created.
The listing file is printed on the user terminal.
The listing file is spooled directly to the line printer.

If this option is omitted from the option list, it is equivalent to the -LISTING NO parameter
inclusion (i.e., no listing file is created).

▶ N O B I G D e f a u l t
Utilizes relative addressing. This is the usual memory addressing mode. See BIG.

▶ N O D C L V A R D e f a u h
Suppresses undeclared variable flagging. Does not generate error messages when undeclared
variables are detected. See DCLVAR.

1 May 1981 2-5 FDR3057

2 COMPILING

▶ N O D E B U G D e f a u l t
Produces code without debugger information. This is the mode to be used for a completely
debugged and tested program. See DEBUG, PROD.
▶ NOERRTTY
No terminal error messages. Suppresses the printing of error messages on the users terminal.
See ERRTTY.
▶ N O F P

Suppresses generation of floating-point skip instructions when testing the result of a floating
point operation. Include NOFP in the option list when compiling for machines that do not have
the floating-point options. Without NOFP, the programs will still execute on such machines but
the UII time will be longer. See FP.
▶ N O F R N
Does not cause rounding of single-precision numbers. See FRN.
▶ NOTRACE

Default

Default
Suppresses global trace. Does not enable the global trace. Does not override TRACE statement.
See TRACE.
▶ N O X R E F D e f a u l t

Suppresses concordance. Do not generate any concordance (cross-reference) listing. See
XREFL, XREFS.
▶ O P T
Optimizes all DO loops that do not contain GO TO expressions. The loops are optimized by
removal of invariant expressions and by strength reduction of expressions involving the DO-
loop index. Strength reduction can be done if the loop index is altered in the normal loop incre
ment only and if the loop increment is invariant within the loop. See STDOPT, UNCOPT.
▶ PBECB
Generates code to load Entry Control Blocks (ECBs) into procedure frame. For 64V-mode
subroutines only. See 64V.

▶ P R O D
Generates code allowing partial use of the source level debugger. Breakpoints can be set at
procedure entries and exits, not at individual statements. Variables are as accessible as in
DEBUG mode. Code is as optimized as the NODEBUG compiler code. However, storage of extra
information increases the size of the object file and thus the size of the runfile. For 64V mode
only. PROD may be used with OPT or UNCOPT. See DEBUG, NODEBUG.
▶ S A V E D e f a u l t
Local storage allocation. Performs local storage allocation statically. See DYNM.
▶ SOURCE
Same as INPUT. See INPUT.
▶ S T D O P T D e f a u l t
Generates code which does not optimize DO loops. See OPT, UNCOPT.
▶ T R A C E
Enable global trace. When this option is included, a trace printout is generated at all assignment
statements and at every labelled statement in the program unit. The global trace affects only the

18

FDR3057 2-6 1 May 1981

COMPILING 2

r

program unit being compiled; it has no effect on other program units in the same executable
program. See NOTRACE.
▶ UNCOPT

Unconditionally optimizes all DO loops. The optimization is performed in the same manner as
for the OPT option. If the loop GO TO statements transfer control within the loop or simply exit
the loop, then the code generated by the compiler will execute correctly. However, if any loop
contains a GO TO statement that exits to a code sequence which transfers control back inside
the loop, then the optimized code will most likely not execute correctly. This is especially true if
the code sequence modifies any operands invariant within the loop or modifies the loop index or
loop index increment. It is the programmer's responsibility to insure that these operations are
not performed if the UNCOPT option is to be used. See OPT, STDOPT.
▶ X R E F L
Enable full concordance. Appends a full concordance (symbol cross-reference) listing to the
end of the program listing. The full concordance includes all symbols in the program unit. See
NOXREF, XREFS.

Note
This parameter has no effect unless an output device/file is
specified using LISTING.

▶ XREFS
Enable partial concordance. Appends a partial concordance (symbol cross-reference) listing to
the end of the program listing. The partial concordance does not include symbols that are refer
enced only in specification statements. See NOXREF, XREFL.

Note
This parameter has no effect unless an output device/file is
specified using LISTING.

An example of the concordance is:

"

OK, FTO POOH -L TTY -NOERRTTY -XREFS
310 X = 48
(0001) 310 X = 48
(0002) B = 1*5
(0003) C = 5 - I
(0004) 1 = 3
(0005) 20 GO TO (100,310,320),
(0006) 320 A = B + C
(0007) 1 = 1
(0008) GO TO 20
(0009) 100 Y = A * X
(0010) WRITE (1,110)
(0011) 110 FORMAT (15)
(0012) CALL EXIT
(0013) END

A R 000062 0006M 0009
B R 000064 0002M 0006
C R 000066 0003M 0006
EXIT R EXTERNAL 000000 0012
I I 000070 0002 0003 0004M 0005
X R 000071 0001M 0009 0010
Y R 000073 0009M

0007M

1 May 1981 2-7 FDR3057

2 COMPILING

$100
$110
$20
$310
$320

0000 ERRORS [<.MAIN.>FTN-REV18.1]
0000 ERRORS [<.FlAIN.>FTN-REVT8.1]

000041 0005 0009D
000056 0010 0011D
000022 0005D 0008
000001 0001D 0005
000030 0005 0006D

The first column is the symbol, the second is the data mode (R for real, I for integer, etc.). The
first numerical column is the storage address, the following numbers are line numbers of the
statements in which the symbols appear. If a.symbol is modified (appears on the left hand side
of the = sign) the letter M is suffixed. The letter D suffix for statement label line numbers identi
fies the line number at which that statement label is defined. A complete list of data mode codes
and line number suffixes appears in Table 2-2.
Table 2-2. Concordance Codes

Code
A ASCII
C COMPLEX
D
I
I
L

DOUBLE PRECISION (REAL*8)
SHORT INTEGER (INTEGER*2)
LONG INTEGER (INTEGER*4)
LOGICAL

R REAL (REAL*4) - single precisions
Code Line Number Suffixes

A Symbol is contained in the argument list of a function or sub
routine.

D Symbol is defined at this line number (statement label).
I

M
S

Symbol is initialized at this line (DATA statement).
Symbol is modified (left hand side of assignment statement).
Symbol is in a data mode specification statement.

3 2 R Default
32K words (64K bytes) mode. In the 32R (default) mode 64K bytes of user space are available to
each FORTRAN user. This space must accommodate the main program, subprograms, all local
storage, library routines, and the COMMON blocks. More space is available to the user in the
64R and 64V modes. See 64R, 64V.

▶ 6 4 R
64K words (128 bytes) mode. The mode gives the user 128K bytes of user space. All main pro
grams and all subprograms executed must be compiled with the 64R parameter. When using the
linking loader utility (LOAD), the MODE command must also be used to change the load mode
to 64R. This assures the user of 128K bytes of user space. See 32R, 64V. Generally, it can be

FDR3057 2-8 1 May 198J

COMPILING 2

r

r

determined if the 64R mode must be selected by looking at the storage areas. Each area requir
ing space such as the COMMON blocks can be examined. If the COMMON blocks require more
than 64K bytes, then the 64R mode decision is obvious. For example, if it is on a segment boun
dary and a load is attempted resulting in an overflow, it is likely that the addresses for the
COMMON are overlapping the program area.
▶ 6 4 V

Segmented Memory Mode. Puts the FORTRAN user into the 64 V Segmented Memory mode and
allows the SEG utility to be used in lieu of the LOAD utility. This is for large programs requir
ing more than 128K bytes of user space; it provides a user area up to 256 segments of 128K bytes
each. It may be run on any Prime 350 (or higher system). See BIG, NOBIG, 32R, 64R.
The LOAD utility and load modes are dictated by the options selected at compile time, as shown
in the following table:

Uti l i ty Compiler Option
LOAD 32R (default)

64R
S E G 6 4 V

Load Option
D32R (default)
D64R, D32R (default)
64V (only mode)

Any PRIMOS system can use either the 32R or 64R addressing mode. Only the Prime 50 Series
can have 64V addressing mode.

r

r

EXPLICIT SETTING OF THE A AND B REGISTERS
Note

If you will not be using the paper tape punch/reader, card
punch/reader or magnetic tape for I/O devices at compilation
time you need not read this section.

Operation
The FORTRAN compiler is invoked by the FTN command to PRIMOS.

FTN pathname [1/a-register] [2/b-register]
where pathname is the pathname of the FORTRAN source file; a-register and b-register are the
values of the A and B registers.
The default values of the registers are:

B

'1707 (binary = 0000001111000111)
Input file is on disk
No listing file
Binary file is on disk
Print error messages at user terminal
32R mode
'0 (binary = 0000000000000000)
Short integers
No concordance
No debugger code
No DO loop optimization

If the default values of a register are used that parameter may be omitted.
FTN pathname
FTN pathname 1/a-reg
FTN pathname 2/b-reg

default A and B registers
default B register
default A register

1 May 1981 2-9 FDR3057

2 COMPILING

For non-default values include both parameters:
FTN pathname 1/a-reg 2/b-reg

or
FTN pathname 1/a-reg b-reg

Spaces should be used to separate components of the command line. The bit values correspond
ing to the options are given in Table 2-3.

Input/output specifications
Additional devices are accessible to users explicitly setting the A and B registers. I/O is speci
fied by the A-register setting as:

T y p e B i t s
Input (source) 8-10
L i s t i n g 1 1 - 1 3
Binary (object) 14-16

The settings corresponding to I/O files and devices are given in Table 2-4.

0

Default
0 0

0
0
0
0
0
1
1
1
1
0
0
0
1
1
1

0 0
0

0 0
0
0

0 0
0
0

0 0
0
0

0 0
0
0

0 0
0

Figure 2-1.

A Register Bit Reset (0)
1
2
3
4
5
0
7
8
9
10
11
12
13
14

NOTRACE
32R

NOERRTTY

15
16 '

B Register Bit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

SAVE
PROD, NODEBUG
STDOPT
OPT, STDOPT
NODEBUG
NOBIG, 32R
NOBIG
INTS

Set (1)

EXPLIST
ERRLIST
TRACE
64R
DEBASE
ERRTTY
INPUT
SOURCE

LISTING

BINARY

PBECB
DYNM
DEBUG
OPT, UNCOPT
UNCOPT
DEBUG, PROD
BIG, DYNM, 64V
BIG
INTL

N O X R E F X R E F S
N O X R E F X R E F L , X R E F S
N O F R N F R N
F P N O F P
N O D C L V A R D C L V A R

Bit-Mnemonic Correspondence (A and B Registers)

18

18

FDH3057 2-10 1 May 1981

COMPILING 2

r

18

18

Table 2-3 A- and B
indicated)

A(x,y) = 0(or 1):

B(x,y) = 0(or 1):
BIG
BINARY

DCLVAR
DEBASE
DEBUG
DYNM
ERRLIST
ERRTTY
EXPLIST
FP
FRN
INPUT
INTL
INTS
LISTING

NOBIG
NODCLVAR
NODEBUG
NOERRTTY
NOFP
NOFRN
NOTRACE
NOXREF
OPT
PBECB
PROD
SAVE
SOURCE
STDOPT
TRACE
UNCOPT
XREFL
XREFS
32R
64R
64V

-register Bit Correspondences of Options (PRIME-supplied defaults are

the mnemonic option causes the value of bits x and y in the A register
to be 0 (or 1).
same as above for the B register.
B(8,9) = 1
A(14,15,16) = object file definition (See Table 2-4); PRIMOS BINARY
command
B(16) = 1
A(6) = 1
B(4,7) = 1
B(3,8) = 1
A(3) = 1
A(7) = 1; default
A(2) = 1
B(15) = 0; default
B(14) =1
A(8,9,10) = input file definition (See Table 2-4)
B(10) = 1
B(10) = 0; default
A(ll,12,13) = listing file definition (see Table 2-4); PRIMOS LIST
ING command
B(8,9) = 0; default
B(16) =0
B(4,7) = 0; default
A(7) = 0
B(15) = 1
B(14) = 0; default
A(4) = 0; default
B(12,13) = 0; default
B(5) = 1; B(6) =0
B(2) = 1
B(4) = 0; B(7) = 1
B(3) = 0; default
A(8,9,10) = input file definition (see Table 2-4); same as INPUT.
B(5,6) = 0; default
A(4) = 1
B(5,6) = 1
B(13) = 1
B(12,13) = 1
A(5) = B(8) = 0; default
A(5) = 1
B(8) = 1

1 May 1981 2-11 FDR3057

2 COMPILING

Table 2-4. Bit/Device Correspondences
Bits Octal Device Mnemonic Parameter
000 None NO
001 User terminal TTY
010 Paper tape reader/punch
Oil Reserved for card

reader/punch
100 Reserved for line printer
101 Reserved for magnetic tape
110 Reserved
111 Disk (PRIMOS file system)

Disk (PRIMOS file system)
Defaults

Source 7 F i l e S y s t e m
Listing 0 N o n e
Binary 7 F i l e S y s t e m

File unit usage
Three file units may be active during a compilation:

Fi le Type PRIMOS file unit
S o u r c e 1
L i s t i n g 2
O b j e c t 3

If the disk is specified as the device for the listing and/or object file, FTN causes these files to be
opened on the disk with default names constructed as follows:
If the source file has the pathname

[MFD]>UFD1>. . .Milename
then the listing file and the object file will be opened as L filename and B filename respec
tively in the UFD currently attached to. Upon completion of the FTN command all files are
closed and command returns to PRIMOS.

If the user desires the listing or binary files to be opened in UFDs other than the current one, this
must be done prior to invoking the FTN command.

The PRIMOS commands
LISTING pathname-2 opens a listing file with the specified name pathname-2 on PRIMOS file
unit 2. This inhibits FTN from opening a default listing file.

Note
Unless bits 11-13 of the A-register are set to '7, nothing will be
written into this file.

FDR3057 2-12 1 May 1981

COMPILING 2

r The listing output(s) of more than one source file can be concatenated if all listings are gen
erated prior to closing the listing file. For example:

LISTING pathname

FTN source-1 1/areg 2/breg

FTN source-n 1/areg 2/breg

CLOSE ALL
(note: system responses are not printed in this example)

The listing file, pathname, will contain the concatenation of all listing outputs from source-1,...,
source-n (for those compilations wherein listings were specified).
BINARY pathname-3 opens a binary (object) file with the specified name pathname-3 on
PRIMOS file unit 3. This inhibits FTN from opening a default object file.

Note
The default value of bits 14-16 of the A-register is '7 - disk file
system. If not using the default A-register values be sure to set
bits 14-16 to '7 or nothing will be written into the object file.
Object files can also be concatenated in the same manner as list
ing files.

If the BINARY or LISTING commands are used prior to FTN to establish non-default file, then
FTN does not close these files upon completion.
After FTN returns command to PRIMOS, these files should be closed by the user by typing:

CLOSE s pathname-2 > < pathname-3
o r '
CLOSE ALL

r
J May 1.981 2-13 FDH3057

Debugging *>

INTRODUCTION
This section discusses the various debugging tools and strategies available to the Prime FOR
TRAN programmer. For a good discussion of debugging techniques (as well as preventive pro
gramming methodology), the reader is referred to Tha Elements of Programming Style.
Kernigan and Plauger, McGraw-Hill, 1978 (Second Edition).

SOURCE LEVEL DEBUGGER
Prime has available, as a separately-priced software package, an interactive source level
debugger (DBG), which interfaces with FORTRAN IV program modules. Major features of this
debugger enable you to:

• Set both absolute and conditional breakpoints
• Request the execution of debugger commands (action list) when a breakpoint occurs
• Execute the program step by step
• Call subroutines or functions from debugger command level
• Trace statement execution
• Trace selected variables, printing a message when their value changes
• Print and change variable values
• Print a procedure call/return stack history (traneback)
• Examine the source file while executing within the debugger, eliminating the need for

hard-copy listings
If you have not purchased the source level debugger, other debugging aids and techniques are
available. They are discussed below.

CODING STRATEGY

Coding strategy involves avoiding traditional errors in order to minimize the need for debug
ging. (Section 4 contains information on coding optimization.) The four major techniques for
coding are:

1. Modular program structure.
2. Proper use of comments.
3. Effective use of indention and spacing.
4. Inserting TRACP] statements to monitor program control flow.

Modular program structure
Modular program structure is the building up of a large program or system from a set of small,
self-contained program modules. Each module performs a discrete, specific task, and contains
all necessary comments, diagnostics and error messages. This permits the programmer to
design, code, compile, load, execute, debug and maintain each portion of the master program
individually (though certain programs may need lo be run in "artificial" environments or with
test routines that simulate other portions of the master program).

1 M a r c h 1 9 8 0 3 - 1 F D H 3 0 5 7

3 DEBUGGING

Once the master program nears completion, modular structure allows the programmer to
isolate problems back to specific modules, permitting simpler and more reliable bug fixes.

Proper use of comments
As pointed out in Elements of Programming Style, the proper use of comments can vastly
improve a program's usability by its own and other programmers, while bad comments can
seriously interfere. Comments should, as a rule, offer succinct information as to the purpose
and intent of upcoming code, and not simply restate Ihe code.

Note
One method of commenting worth consideration is that of
placing the majority of comments on the right-hand side of the
file (the actual code being on Ihe left). This allows the program
mer to cover over comments when re-inspecting code, leading
to Ihe possible discovery that it does nol perform the claimed
lask as staled in the accompanying comment.

Effective use of indention and spacing

Indention, spacing, and blank lines, when properly used, help display the parallelism, sym
metry and/or consistency (or lack thereof) in a given portion of code.

Inserting TRACE statements to monitor program control flow
The FORTRAN TRACE statement permits the monitoring of program control flow by display
ing values of specified variables whenever they are changed during program execution. TRACE
is explained in Section 6. By monitoring the values of given variables, you can often determine
at what places your program is nol working as desired, and from I here investigate the cause.

COMPILER USAGE

Compile-time debugging consists of the following operations:
1. Syntax checking and compile-time errors.
2. DCLVAR and global TRACE compiler options.

Syntax checking
The FORTRAN compiler automatically performs syntax checking as part of the compiling
process. Syntax errors are usually due to coding or typing errors. (Remember that what the
compiler perceives as a syntax error may often be the result of some othererror elsewhere in the
program; e.g., the compiler will flag the statement GOTO 140 if there is no statement 140, or if
there is an error in statemenl 140.)
If your program has syntax errors, do not attempt to load and execute it; make the necessary
corrections first.

Other compile-time errors
The compiler also checks for non-syntactical errors, such as program length exceeding avail
able user space. As with syntactical errors, do not attempt to load and execute a program which
has non-syntactical errors.

The DCLVAR and global TRACE compiler options
The DCLVAR option to the FTN command causes the compiler to flag all variables which are
not explicitly declared in header, specification, storage, or external statements. This procedure
often uncovers minor spelling errors in the source file (e.g., you declared the variable TEMP, but
elsewhere typed it as TMEP).

F D R 3 0 5 7 3 - 2 1 M a r c h 1 9 8 0

DEBUGGING 3

The TRACE option produces a trace for every variable in the program. This option takes
precedence over any TRACE statement in your FORTRAN program, and is particularly helpful
in conjunction with the PRIMOS COMOUTPUT command (given prior to Ihe FTN command),
which will thus send all TRACE output to a file. (See the Prime User's Guide forCOMOUTPUT
information).
See Section 2 for more information on these compiler options.

1 M a r c h 1 9 8 0 q o° ' J F D R 3 0 5 7

Optimization andother helpful hints

INTRODUCTION
This section presents some programming hints for improving the performance of FORTRAN
routines. Some of them are merely reminders of good coding practice; others lake advantage of
implementation techniques in the FTN compiler. All offer some speedup in program execution.

DO LOOPS

1. Remove invariant expressions from DO loops. For example,

DO 10 I * 1, 50
A = 3.01

10 CONTINUE
should be changed to:

A = 3.01

DO 10 I =1, 50

10 CONTINUE
2. Optimize unnecessary subscript calculations. The first source code sequence is more effi
cient than the second one below.

SIN = G

DO 10 I = 1, 90
SUM = SUM + ARRAY (I)

10 CONTINUE

ARRAY (N) = ARRAY (N) •+ SUM

DO 10 I = 1, 90
ARRAY(N) = ARRAY(N) + ARRAY (I)

10 CONTINUE
3. Minimize DO Loop Setup Time. When nesting DO Loops (also any hand-coded control struc
tures), order Ihe loops so that the fewer iteration count loops are on the outside, and the higher
iteration count loops are on the inside.

Example: 1:
00 20 I = 1, 5

DO 10 J =1, 100

I M a r c h 1 9 8 0 4 _ - j FDR 30 57

4 OPTIMIZATION AND OTHER HELPFUL HINTS

loop-body

10 CONTINUE
20 CONTINUE

Example 2:
DO 20 J = 1, 100

DO 10 I = 1, 5

loop-body

10 CONTINUE
20 CONTINUE

Example 1 is Ihe preferred control structure for the following reasons. The execution lime for a
DO loop consists of three major items:

1. Setup time (Ts) — the time required lo initialize the index.
2. Increment and lest time (Ti) — the lime taken each time the flow of control hits the

bottom of Ihe loop.
3. Time to execute Ihe body of Ihe loop (Th).

For examples 1 and 2 above, the time required to execute the DO 10 loops is:
1. Time(l) = 5 x (TS + lOOTi + 100Tb)
2. Time(2) = 100 * (Ts + 5Ti + 5Tb)

which yields:
1. Time(l) = 5Ts + 500Ti + 500Tb
2. Time(2) = lOOTs + 500Ti + r>00Tb
Time (1) is smaller, making it Ihe preferred structure.

4. Use CONTINUE Statements. Always end DO loops with a CONTINUE statement. This is a
special case of statemenl number usage, described below.

STATEMENT NUMBERS
Eliminate all unnecessary statement numbers, i.e., those that program control will never access.
Most optimizations are performed between statement numbers; therefore the fewer statement
numbers, the more optimization possible. For example.

IF (I .EQ. O) J = K

can be more efficient and is easier to read than:

IF (I .NE. 0) GOTO 10
J = K

10 next-statement

F D R 3 0 5 7 4 - 2 1 M a r c h 1 9 8 0

OPTIMIZATION AND OTHER HELPFUL HINTS 4

r

MULTI-DIMENSIONED ARRAYS
Reference memory as sequentially as possible. For multi-dimensioned arrays, the leftmost sub
script varies the fastest in FORTRAN, so when addressing large portions of an array, paging
and working set can be significantly reduced by indexing the leftmost subscript the fastest
(e.g., in the innermost loop). Thus,

DO 20 I = 1, 100
DO 10 J = 1, 100

ARRAY (J, I) = 3.0
1 0 C O N T I N U E
20 CONTINUE

is more efficient than accessing the structure as ARRAY (I, J) = 3.0.
If the program can be coded CLEANLY without multiple-dimension structures, memory
addressing can be more efficient. For each dimension over one, this saves one 'multiply' per
effective address calculation; i.e., number-of-multiples = number-of-dimensions - 1. For
instance, the example above could be written as:

DIMENSION TARRAY (1)
EQUIVALENCE (.ARRAY (1,1), TARRAY (1))

DO 10 I = 1, 10000
TARRAY(I) =3.0

10 CONTINUE

saving considerable CPU time.

LOAD SEQUENCE AND MEMORY ALLOCATION

Paging time can be significantly reduced by ordering routines by frequency of use (rather than,
say, alphabetically). The Main routine must always be loaded first for LOAD or SEG to work
properly.

A suitable loading scheme would allocate memory as:
MAIN

END

most common subroutines

occasionally used subroutines

infrequently used subroutines

Paged memory fragmentation can be reduced by loading routines on page boundaries usin«
SEG's P/LO command.
In subroutine libraries, the top down tree structure must be preserved if'reset force load' is in
use.

This ordering method may also be used to order COMMON blocks in memory by frequency of
use. See the LOAD and SEG Reference Guide for details.

/ M a r c h 1 9 8 0 4 _ q4 d F D R 3 0 5 7

4 OPTIMIZATION AND OTHER HELPFUL HINTS

FUNCTION CALLS
Eliminate redundant function calls with equal arguments. For example:

TEMP = SIN (X)
A = TEMP * TEMP

is significantly faster than:

A = SIN(X) * SIN(X)

Make sure that the function has no sideeffects which might modify the argumenl(s) or anything
else in Ihe environment

V-MODE VS. R-MODE COMPILATION
In almost all cases, V-mode code executes faster than R-mode code. If a V-mode program plus
data is less than 64K words, and the routine is nol to be shared, use the MIX command of SEG
(see the LOAD and SEG Reference Guide) lo compact the memory image.

64V-MODE COMMON
The FORTRAN compiler and SEG allow some 64V mode FORTRAN programs faster access to
variabilis in COMMON. If a COMMON block is loaded into the same segment as the procedure
area or link area which accesses it, the compiled program will address the COMMON variables
directly, rather than through a two-word indirect pointer. Thus, careful loading of routines
with frequently accessed COMMON areas into Ihe same segment in 64V mode will cause an
appreciable increase in execulion speed.

IF STATEMENTS
Minimize compound logical connectives within an IF statemenl when possible. For example,

IF (A.EQ.B .OR. C.EQJ3) GOTO 10
has the same effect as, but is slower than:

IF (A.EQ.B) GOTO 10
IF (C.EQ.D) GOTO 10

INPUT/OUTPUT

Significant speed improvement in raw data transfers can be achieved by using the equivalent
IOCS or file system routine instead of formatted input/output. For example,

INTEGER TEXT (40)
READ (5, 20, END = 99) TEXT

20 FORMAT(40A2)
is slower than

INTEGER TEXT(40)
CALL RDASC(5, TEXT, 40, $99)

bul the fastest yel is . . .
INTEGER TEXr(40), CODE
CALL RDLIN$(1, TEXT, 40, CODE)

IF(CODE .NE. 0) /* Any error?
X GOTO 99 /*Yes, go process error.

There are also routines for reading/writing octal, decimal, and one-unil hexadecimal numbers
from/to the terminal. For example, CALL TIHEX(N), will read a hexadecimal integer from the
terminal into the 16-bit integer named N. For printing out text effficiently, use the

F D R ; , 0 f > 7 4 - 4 J M a r c h 1 9 8 0

OPTIMIZATION AND OTHER HELPFUL HINTS 4

"

TNOU/TNOUA routines. See Ihe Reference Guide, PRIMOS Subroutines for more specific
information about these lower level routines.

STATEMENT SEQUENCE
The compiler can do register tracking, but cannot reorder statements. For example, given the
sequence:

A = B
X = Y
R = B

the generated code is
LDA B
STA A
LDA Y (li instructions long)
STA X
LDA B
STA R

If the source had been rearranged to
A = B
R = B
X = Y

the generated code is reduced to:
LDA B
STA A
STA R (5 instructions long)
LDA Y
STA X

PARAMETER STATEMENTS

Initializing named constants via PARAMETER statements allows the compiler to perform
constant-folding optimizations. The compiler does not fold normal variables initialized by
DATA statements into constants.

INEFFICIENT LIBRARY CALLS

Some of the library routines are not •optimized for time-critical operations. The get and store
character routines (GCHRSA, etc.) are convenient, but comparatively slow. Some of the
APPLIB routines are by definition slow. Avoid using the MAX and MIN calls especially in V-
mode. It may be more efficient to code it yourself.
Remember the 80/20 rule, which states: "80 percent of a program's lime is spent in 20 percent of
the code" [exact numbers subject to debate). Therefore, standard library routines are adequate
in Ihe non-time-critical 80 percent of the program.

STATEMENT FUNCTIONS AND SUBROUTINES
Use statement functions instead of formal FUNCTION subprograms when practical. In V-mode
this eliminates a lengthy PCL/PRTN sequence. Try to minimize the number of arguments
passed to and from a function or subroutine regardless of whether it is a statement function or a
separate function subprogram.

1 M a r c h 1 9 8 0 4 - 5 F D R 3 0 5 7

4 OPTIMIZATION AND OTHER HELPFUL HINTS

INTEGER DIVIDES
When dividing a non-negative integer by a power of two, use the RS (right shift) binary intrin
sic function. For example:

I = RS(J, 3)
Is much faster than:

I = j/8

LOGICAL VS. ARITHMETIC IF

Logical IFs are preferred to arithmetic IF statements. Many FORTRAN programs have sections
which look like:

IF (I -I) 1, 2, 1
1 next-statement

2 some-olher-slatement
A more optimal code sequence would be:

IF (I. EQ. J) GOTO 2
1 next-statemenl

2 some-other-stalement

which is also more readable.

USE OF THE COMPILER'S-DYNM OPTION
V-mode programs run faster, belter, anil cleaner if local variables are placed in the slack
through Ihe -DYNM option. These variables are not guaranteed to be valid after a return. For
example:

INTEGER COUNT
DATA COUNT /0/

IF(COUNT .NE. 12) GOTO 1

CALL TONL
COUNr = 0

1 COUNT = COUNT + 1
some-mo re-code
RETURN
END

The above example would not work if compiled with Ihe -DYNM option, because the value of
COUNT would not be saved after execution of the RETURN stalement.

1 - D R 3 0 5 7 4 - 6 1 M a r c h 1 9 8 0

OPTIMIZATION AND OTHER HELPFUL HINTS 4

CONCLUSION
These are some of the more common guidelines lo keep in mind while programming in Prime
FORTRAN. If you keep these ideas in mind while writing, or while 'tweaking' FORTRAN
programs, your programs will be generally smaller and faster. Some of these rules are nol
necessarily permanent. As Prime FORTRAN evolves more and more optimizations, the user
will have more freedom to choose coding styles.
Generally il is easier lo apply these techniques at initial coding time, as opposed lo 'going back
and optimizing'. While some of these changes can be done easily with a few Editor tricks, others
may require extensive changes to source code. Many other useful examples of good FORTRAN
programming practice appear in the following text:

Kernigan and Plaugher, The Elements of Programming Style. McGraw-Hill, 1974

REQUEST FOR CONTRIBUTIONS TO THIS SECTION
If you have optimizing techniques in Prime FORTRAN that you would like to share with future
readers, please submit them to: Technical Publications, Prime Computer, Inc., 500 Old Connec
ticut Path, Framingham, MA 01701.

1 M a r c h 1 9 8 0 4 . 7 FDR3057

LANGUAGE ̂
REFERENCE

-

FORTRAN
language elements

LEGAL CHARACTER SET
The characters allowed in Prime FORTRAN are:

. The 26 upper-case letters: A.B,C,D,E,F,G,H,I,J,K,L,M,N,0,P,Q,R.S,T,U,V,W,X,Y,Z.
• The 10 digits: 0,1,2,3,4,5,6,7,8,9.

Letters and digits together are called alphanumeric characters.
• These 12 special characters:

= equals
single quote (apostrophe)

: colon
+ plus

minus
* asterisk
/ slash
(left parenthesis
) right parenthesis

comma
decimal point

$ dollar sign
• Blanks or spaces.

Blanks in Hollerith constants (character strings) or in formatted input/output statements are
treated as character positions. Elsewhere in Prime FORTRAN, blanks have no meaning and can
be used as desired to improve program legibility.

LINE FORMAT
Each program line is a string of I to 72 characters. Each character position in the line is called a
column, numbered from left to right starting with 1. These are three types of lines: Comments,
statements (and their continuations), and control statements. (See Figure 5-1.)

Comments
Comment lines are identified by the letter C in column 1. The remainder of the line may contain
anything. A comment line is ignored by the compiler, except that it is printed in the program
listing. A comment may be placed on a statement line (except inside a Hollerith constant) using
the format:

/* comment*/

Statements
Columns 1-5 are reserved for the numerical statement label, if any. (Blanks and leading zeros
are ignored.) Column 6 must be a blank or a zero. Columns 7-72 contain the statement. The
statement may begin with leading blanks; this is often done to make the program easier to read,
as for indention of nested DO loops or nested IF statements. In the continuation of a statement,

1 M a r c h 1 9 8 0 5 - 1 F D R 3 0 5 7

5 FORTRAN LANGUAGE ELEMENTS

columns 1-5 must be blank, column 6 may be any character EXCEPT 0 (zero) or a blank, and the
statement continuation is in columns 7-72.

Control
Column 1 must contain the special character $. Other columns are specified by the individual
control operation. (See, for example, SINSERT in Section 6.)
Columns 73 to 80 are available for line order sequence numbers or other identification (usage is
optional). These columns, like comments, are ignored by the compiler except that they are
printed in the program listing.

12 567

COLUMN NUMBER

72 73 80

l I I
I I I

C COMMENT TEXT1 ' I
aaaaay i^«_ STATEMENT.
I I .

SEQUENCE NUMBER

bbbbbzU*.STATEMENT CONTINUATION -*J
I I I I

l $ t C O N T R O L - * » J
I I ' 1
aaaaa Statement label (optional)
bbbbb Blanks

y Blank or zero
z Any character except blank or zero

NOTE: Comments may be extended past column 72 to column 80.

OPERANDS

Operands are those elements which are manipulated by the program. They are constants, para
meters, variables, arrays, and address constants.

Constants
See appendix D for details of constant storage.
Constants may be any of the following types:

Memory
Mode Words Range
INTEGER (short) -32768 to +32767
INTEGER (long) -2147483648 to +2147483647

(-2**31 to +2**31-1)
REAL ± (10**-38 to 10**38)
DOUBLE PRECISION ± (10**-9902 to 10**9825)
COMPLEX 2 x 2 same as for Real
LOGICAL 0 or 1 (i.e., .FALSE, or .TRUE.)

FDR3057 5-2 1 March 1980

FORTRAN LANGUAGE ELEMENTS 5

r

r

r

Integers: may be decimal or octal numbers. In either case, no decimal point appears in the repre
sentation. Short integers may have up to 5 decimal digits or6 octal digits, plus a sign, within the
magnitude range.

decimal 12345 or -23579
octal :13752 or -:156. or

5013752 or -30156

(The O notation is obsolete. II is supported for compatibility; use is not
recommended)

Short integers range in magnitude from 0 to 32767 (decimal); i.e., :0 to -.077777 (octal). The
number -32768 is a long integer in its decimal representation, but a short integer in its octal
representation.
Long integers may have any number of digits (plus a sign) - only the magnitude is restricted, for
example, 000000000000000000001.
The representation is the same as shorl integers. Long integers range from 0 (:000000) to
2147483647 [:17777777777] and from -2147483048 (-.20000000000) to -1 (:37777777777). The
range is from -(2**+31) to+(2**31-1). The number -2147483648 can be represented in octal bul
not in decimal form.
Integer constants are treated as shorl integers unless:

• Their magnitude exceeds 32707 or :\77777 (octal).
• Their representation exceeds 5 decimal digits or 6 octal digits; leading zeros are

counted in determining Ihe number of digits in Ihe constant.

Example:
30 short integer
000030 long integer

If the program is compiled with INTL then all integer constants are treated as long integers.
(See Section 2 for details.)
Long integers may be used in the FORTRAN program any when; that shorl integers are used.
This includes subscripts, ASSIGNed GOTOs, computed GOTOs, FORTRAN I/O unit num
bers, DO-loop index values, and character counts.

CAUTION
Some subroutines expect short integers as arguments. In these
cases, convert any long integers lo shorl integers via Ihe INTS
function [see Section 8 for details).

Real numbers: may be written as
1:157.924. or 0.3579 E 02

The decimal point is mandatory in the first case. In the exponential form the decimal point is
optional; the exponent ranges from -38 lo -38. The position following the E must contain a
blank, a plus sign, or a minus sign. The blank is interpreted as a plus sign.
Only the seven most significant digits are retained.
Double-precision numbers: are similar to real numbers except that fourteen significant digits are
retained and the exponential (or floating point) representation uses Din place of E. The D format is
mandatory for double-precision numbers. For example:

12345.9253 D-ll
The exponent (following D) may take on values from -9902 to +9825. Only 3 digits can be
printed from the exponents (see FORMATS, Section 6).

19

18

1lulv 1982 5-3 FDR3057

5 FORTRAN LANGUAGE ELEMENTS

Complex numbers: are an ordered pair of two real numbers enclosed in parentheses and
separated by a comma:

(REAL1, REAL2) e.g., (1.345, 0.59 E-2)
The rules for real number representation apply to each element of the complex number.
Logical constants: logical constants have only two possible values:

0 (zero) corresponding to .FALSE.
1 (one) corresponding to .TRUE.

ASCII: ASCII constants are character strings. They are stored as follows:

Mode
Maximum Number of

ASCII Characters Stored
Integer, short
Integer, long
Real
Double Precision
Complex

When character strings are compared, bit-by-bit checking is only done for those stored in
integers; hence storage in modes other than integer (long or short) should be avoided.
Characters are left justified and the remainder of the word(s) are packed with blanks.
ASCII constants are represented in either of two ways:

1. A character count followed by the letter H and the string:

23HTHIS IS AN ASCII STRING

2. The string enclosed in single quotes:

"ffllS IS AN ASCII STRING1

A single quote may be represented in a string by using two single quotes
quote.) This will count as one character.
Example:

"] NOT a double

WRITE (1,1)
1 FORMAT ('AB"C'

will print AB'C at the terminal.

Parameters
Parameters are named constants and may be of any data mode. They may be used in the pro
gram anywhere a constant can be used, except in FORMAT statements; they may also appear in
DATA and DIMENSION statements. Parameters are loaded al compile time, and the code gen
erated for them is identical lo that generated for constants (see the PARAMETER statement in
Section 6).

Variables
Variable names have from 1 to 0 characters. Character 1 must be alphabetic; characters 2-5 (if
any) must be alphanumeric.

FDR3057 5-4 1 May 1981

FORTRAN LANGUAGE ELEMENTS 5

r

If no modes are specifically declared, then all variables whose names begin with the letters I, J,
K, L, M, N, are integer mode, and variables whose names begin with A-H, or O-Z are real mode.
Check Section 6, Specification Statements, for instructions on how to override this implicit
convention and also specify double precision, complex and logical modes.

Ar rays
Arrays are ordered multidimensional sets of data represented as:

ANAME (11,12,. . ..In).
The I's are the indexes (subscripts) of the array, and must be positive integers (constants, para
meters, or variables). All elements of the array must be of the same mode — integer (short or
long), real, double precision, complex, or logical. An array may have from 1 to 7 subscripts.
The total size of all arrays not in COMMON may not exceed one segment (128K bytes). If arrays
are larger than one segment, they must be put into COMMON blocks.

GENERALIZED SUBSCRIPTS
There is no syntactical limitation on subscript expressions. The FORTRAN compiler allows
any integer-valued expression as an array subscript.

Use of generalized subscripts

Array references have the form

A(S1,S2,. . .,Sn)
A is the array name
Si is a subscript expression (K=i<=7)

A subscript expression is any legal FORTRAN long- or short-integer-valued expression. It may
contain constants, variables, function references, intrinsic references, and other array refer
ences. The nesting limit on any expression is 32 levels of parentheses, whether syntactical,
array, or function reference parentheses. Non-integer constants and variables are not allowed
within subscript expressions.

Note
Conversion functions (such as IDINT, IFIX, INT) may be used
to convert non-integer expressions to integer within a subscript
expression.
No more than seven subscripts may be used to index an array.

Example:
The following FORTRAN program illustrates the use of generalized subscripts. It deliberately
contains some rather bizarre expressions which show the flexibility of subscripting, but is not
intended as a model of good coding practice. (POOP is a REAL-valued function.)

C
C GENERALIZED SUBSCRIPrS
C

REAL A(180,100),B(10),Z
INTEGER G (3,4,5),H(3000),I,J,K

C
C ASSIGNMENT
C

Z=A(G(H(25**K**2) ,2,RS (I ,H(2))) ,INTS (Z-A(l, 10*H (J))))* 4-B(INTS (POOP (2)))

1 M a r c h 1 9 8 0 5 - 5 FDR3057

5 FORTRAN LANGUAGE ELEMENTS

c
C I F
C

IF(Z.NE.B(RS(K,H(K*5)))) GOTO 1000
C
C C A L L
C
1000 CALL POOPl(A(H(INTS(POOP(1))) ,G(1,J*2,1)) ,Z)
C
C E T I C .
c

END
Address constants

Address constants consist of a statement label prefixed by a dollar sign ($). They contain the
memory address of the first line of code generated by the statement label whose value is that of
the address constant For example, if, 100 A=B*C is a statemenl in the program, then $100 is the
address of Ihe code generated by thai statemenl. The address constant is an integer value. It is
usually used in conjunction with the ALTRTN from external subroutines (these are alternate
returns generated by encountering errors in executing the subroutines).
OPERATORS
Operators modify an operand or concatenate Iwo operands.

Logical operators
FORTRAN'S logical operators are: .NOT., AND., .OR. (in this section, P and Q have been speci
fied as logical variables.

.NOT.: -NOT. Q negates the value of Q.
Q .NOT.Q
TRUE. .FALSE.
.FALSE. .TRUE.

.AND.: P -AND. Q is the logical ANDing of the bits of P and Q (set intersection).
P

Q .TRUE. .FALSE.
.TRUE. .TRUE. .FALSE.
.FALSE. .FALSE. .FALSE.

.OR.: P -OR. Q is the logical non-exclusive ORing of P and Q (set union).
P

Q . T R U E . . F A L S E .
. T R U E . . T R U E . . T R U E .
. F A L S E . . T R U E . . F A L S E .

Arithmetic operators
** Exponent ia t ion

Unary minus* M u l t i p l i c a t i o n
/ D i v i s i o n
+ A d d i t i o n

Subtraction
Equality or replacement

FDR3057 5 _ 6 l M a r c h V) 8 0

FORTRAN LANGUAGE ELEMENTS 5

-

"

Relational operators
.LT. Less than
.LE. Less than or equal to
.EQ. Equal to
.NE. Not equal to
.GT. Greater than
.GE. Greater than or equal to

Operator priority
FORTRAN evaluates operators within expressions in the following order:

** Exponentiation
- Unary Minus* or / Multiplication or division
+ or - Addition or subtraction
.LT.,.LE.,.EQ.,

Relational operators
.NE.,.GT.,.GE.
.NOT. Logical negation
.AND. Logical intersection
.OR. Logical union

At equal level of operators, priority evaluation generally proceeds from left to right. However,
the compiler takes advantage of groupings of elements (in accordance with mathematical rules)
and, as a result of this, evaluation may sometimes not be strictly left-to-right (See note below).
Expressions within parentheses are evaluated before operations outside the parenthese are
performed.

Note
When two elements are combined by an operator, the order of
evaluation of the elements is optional. If mathematical use of
operators is associative, commutative, or both, full use of these
facts may be made to revise orders of combination, provided
only that integrity of parenthesized expressions is not violated.
The results of different permissible orders of combination even
though mathematically identical need not be computationally
identical. See: Section 6.4, para. 2, ANSI X3.9-1966

PROGRAM COMPOSITION

Each program (or subroutine or external function) consists of a number of program lines. Pro
gram lines are grouped and ordered by type of statement as shown in Figure 5-2. Comments and
TRACE and LIST control statements can be used anywhere in the program. The END statement
must be the last statement of a program; nothing may follow END except FUNCTION or SUB
ROUTINE of another subprogram. The types of statements are discussed in Section 6.

1 M a r c h 1 9 8 0 5 - 7 F D R 3 0 5 7

5 FORTRAN LANGUAGE ELEMENTS

Header statement, if required:
FUNCTION, SUBROUTINE, BLOCK DATA

Storage and Specification Statements:
COMMON, DIMENSION, EQUIVALENCE, SAVE, EXTERNAL, COMPLEX, DOUBLE
PRECISION, INTEGER, INTEGER*2, INTEGER*4, LOGICAL, REAL, REAL*4,
REAL*8, IMPLICIT, PARAMETER

DATA Statements
Statement Function Definitions
Executable Statements

Arithmetic and logical assignments
Control Statements: GOTO, ASSIGN, IF, DO, CONTINUE, PAUSE,

STOP, RETURN
Input/Output Statements: READ, WRITE, PRINT, FORMAT, REWIND,

BACKSPACE, END FILE
Subrou t ines : CALL subrname [(a rg -1 a rg -n)]

END Statement

Figure 5-2. Source Program Composition

FDR305 5-8 1 Marc 11 1980

FORTRAN statements

IMPLEMENTED STATEMENTS

Legal statements for Prime FORTRAN IV are listed below with I heir functional category.
S t a t e m e n t C a t e g o r y
A S S I G N C o n t r o l
B A C K S P A C E D e v i c e C o n t r o l
B L O C K D A T A H e a d e r
C A L L E x t e r n a l P r o c e d u r e
C O M M O N S t o r a g e
C O M P L E X S p e c i fi c a t i o n
C O N T I N U E C o n t r o l
D A T A D a t a i n i t i a l i z a t i o n
D E C O D E C o d i n g
D I M E N S I O N S t o r a g e
D O C o n t r o l
DOUBLE PRECIS ION Spec i fica t i on
E N C O D E C o d i n g
E N D C o n t r o l
E N D F I L E D e v i c e C o n t r o l
E Q U I V A L E N C E S t o r a g e
E X T E R N A L E x t e r n a l P r o c e d u r e
F O R M A T F o r m a t
F U L L L I S T C o m p i l a t i o n / R u n - T i m e C o n t r o l
F U N C T I O N H e a d e r
G O T O C o n t r o l
I F C o n t r o l
I M P L I C I T S p e c i fi c a t i o n
I N T E G E R S p e c i fi c a t i o n
I N T E G E R * 2 S p e c i fi c a t i o n
I N T E G E R * 4 S p e c i fi c a t i o n
L I S T C o m p i l a t i o n / R u n - T i m e C o n t r o l
L O G I C A L S p e c i fi c a t i o n
m o d e F U N C T I O N H e a d e r
N O L I S T C o m p i l a t i o n / R u n - T i m e C o n t r o l
P A R A M E T E R S p e c i fi c a t i o n
P A U S E C o n t r o l
P R I N T I n p u t / O u t p u l
R E A D I n p u t / O u t p u t
R E A L S p e c i fi c a t i o n
R E A L M S p e c i fi c a t i o n
R E A L * 8 S p e c i fi c a t i o n
R E T U R N C o n t r o l
R E W I N D D e v i c e C o n t r o l
S A V E S t o r a g e

1 M a r c h 1 9 8 0 6 - 1 FDR3057

6 FORTRAN STATEMENTS

S T O P C o n t r o l
S U B R O U T I N E H e a d e r
T R A C E C o m p i l a t i o n / R u n - T i m e C o n t r o l
W R I T E I n p u t / O u t p u t
$ I N S E R T C o m p i l a t i o n / R u n - T i m e C o n t r o l

In this reference, section statements are grouped in functional order to clarify and simplify dis
cussion, as follows:
1- Header Statements:

. BLOCK DATA
• FUNCTION
• SUBROUTINE

2. Specification Statements:
• IMPLICIT
. mode: COMPLEX, LOGICAL, DOUBLE PRECISION, REAL, REALM, REAL*8,

INTEGER, INTEGER*2, INTEGERM.
• PARAMETER

3. Storage Statements:
• COMMON
• DIMENSION
. EQUIVALENCE
. SAVE

4. External Statements:
• CALL
. EXTERNAL

5. Data Definition Statements:
• DATA

6. Compilation and Run-Time Control Statements:
. FULL LIST
. LIST
. NO LIST
. TRACE
• $INSERT

7. Assignment Statements
8. Control Statements

. ASSIGN

. CONTINUE
• DO
. END
• GOTO
. IF
. PAUSE
. RETURN
. STOP

9. Input/Output Statements:
. PRINT
• READ
. WRITE

R 9 1 M a r c h 1 9 8 0F D R 3 0 5 7 ° ~ *

FORTRAN STATEMENTS 6

10. Coding Statements:
. DECODE
. ENCODE

11. Format Statements:
. FORMAT

12. Device Control Statements:
. BACKSPACE
. ENDFILE
. REWIND

13. Functions
14. Subroutines

18

HEADER STATEMENTS FOR SUBPROGRAMS

BLOCK DATA statement

BLOCK DATA
The BLOCK DATA statement labels a block data subprogram. This type of subprogram labels
COMMON areas and then initializes data values within these areas via DATA statements.
Block data subprograms are compiled separately and linked lo the main program by the Loader.

FUNCTION statements

[mode] FUNCTION name (argument-l[, argument-2, . . . argument-n])
The arguments are a non-empty list of the arguments passed by the calling program. There is no
syntactical upper limit to the number of arguments. However, long lists will slow execution.
The name is both the name of the function in the calling program and the variable that returns
the value calculated by the function. The mode is an optional specification of one of the data
types, selected from the following list:

COMPLEX
INTEGER
INTEGER*2
INTEGERM

LOGICAL
REALM (REAL)
REAL*8 (DOUBLE PRECISION)

If no mode is specified, FORTRAN will assign one implicitly based upon the first letter of the
function name (i.e., I—N=Integer, A-H or O—Z=REAL.)

SUBROUTINE statements

SUBROUTINE name [(argument-1, argument-2 . . . argument-n)]
The arguments are a list of arguments, some of which are passed by the calling program; others
are dummy arguments whose values are calculated by the subroutine and returned to the call
ing program. There is no syntactical upper limit to the number of arguments. However, long
lists will slow execution.

CAUTION
In Prime's FORTRAN, subroutine arguments are passed by
address (location) rather than by value. Thus, it is extremely
important not to place constants or parameters in the argument
list as arguments which will be returned, since this will alter
their value. Also, returned arguments may not be expressions.

1 May 1981 6-3 FDR3057

6 FORTRAN STATEMENTS

Example:
1=5
PRINT 10,1
CALL SUB1(I,5)
1=5
PRINT 10,1

10 FORMAT (12)

prints on user terminal
5

25

(J,K)SUBROUTINE SUB1
K=J**2
RETURN
END

SPECIFICATION STATEMENTS
FORTRAN automatically assigns modes to all variables, parameters, arrays, and functions
(except intrinsics) that do not appear in mode specification statements. The FORTRAN
language default is as follows: if the symbol's first character is I through N (inclusive), the
symbol is typed as integer; all others (A—H, O—Z) are typed as real. The default integers are
short integers unless the program is compiled with the long integer default — see Section 2.

IMPLICIT statements
IMPLICIT mode-1 (list-1), mode-2 (list-2), . . ,,mode-n (list-n)

The IMPLICIT statement allows the programmer to override the language convention for
default data typing. Each mode is a data mode such as REALM, COMPLEX, etc. Each list lists
the letters to be typed as the mode specification. Letters may be separated by a comma or an
inclusive group of letters may be indicated with a dash.
Symbols not typed in this statement and not specified in mode specification statements will
revert to the FORTRAN language default.

Example:
IMPLICIT DOUBLE PRECISION (A.M-Z), LOGICAL (B)

First letter of symbol Type
A, or M through Z Double Precision
B Logical
C through H Real
I through L Integer

If used, the IMPLICIT statement must be the first statement of a main program, or the second
statement of a subprogram. IMPLICIT typing does not affect intrinsic or basic external
functions. IMPLICIT affects all symbols not otherwise typed. This includes dummy variables
in the first statement of a subroutine or function. The user should take care to make sure that
these dummy variable symbols will be of the proper data type.

Mode specification statements
mode [VI, V2, . . . , Vn]

The mode specification statement allows override of the implicit mode assignments of symbol
names which was done either by IMPLICIT or language default.
The word mode is replaced by one of the nine data mode specifications:

'■■*-\

'

FDR3057 6-4 1 May 1981

FORTRAN STATEMENTS 6

COMPLEX
DOUBLE PRECISION (same as REAL*8)
INTEGER
INTEGER*2
INTEGERM
LOGICAL
REAL (same as REALM)
REALM (same as REAL)
REAL*8 (same as DOUBLE PRECISION)

The V's are a list of variable names, parameter names, array names, function names, or array
declarers.
Recognition of synonymous specifications is designed to ease conversion of extant programs to
the Prime FORTRAN system. INTEGER will normally default to INTEGER*2 (short integer)
unless the program is compiled including the INTL option. In this case, INTEGER will default
to INTEGERM (long integer). It is recommended in new programs that the programmer
explicitly use INTEGER*2 and INTEGERM specifications. (See Section 2 for compiler
information.)
Global mode definition occurs if a mode specification does not include a symbol list. In this
case, all symbols which do not appear in specification statements and whose first appearance
follows this global mode statement are declared to be of this globally-specified mode.

CAUTION
The use of global mode and the IMPLICIT statement in the same
program unit is prohibited. The global mode is functionally
replaced by the IMPLICIT statement. The use of the IMPLICIT
statement is strongly recommended as a superior programming
technique. The global mode is still supported by the FORTRAN
system to allow the use of existing programs utilizing it.

PARAMETER statement
PARAMETER (V1=C2, . . .,Vn=Cn)

Where the V's are variables (arrays are not allowed) and the Cs are constants or constant
expressions of the same mode as the corresponding variables. The operands in the constant
expressions may be constants or previously defined parameters. Allowed operations include +,
-, *, and / on INTEGER*2, REAL*8, and REALM operands. INTEGER*2 XOR, OR, AND, MOD,
shift, and truncate function references are also allowed. An error message, ILL. CONSTANT
EXPR., is generated if these restrictions are violated. The variable names must be typed
explicitly prior to the PARAMETER statement or default-typed implicitly. All other uses of the
PARAMETER names must follow the PARAMETER statement. PARAMETER names may be
used wherever a constant would be used (including DATA AND DIMENSION statements)
except in FORMAT statements. Since the parameters are named constants, PARAMETER
names may not be used in COMMON or EQUIVALENCE statements.
Enclosing the parameter list in parentheses is required by the FORTRAN 77 standard. Prime's
FORTRAN will accept a PARAMETER statement with or without the parentheses.

STORAGE STATEMENTS

COMMON statement

COMMON /Xl/Al/. . . /Xn/An
Where each A is a non-empty list of variable names or array names, and each X is a COMMON
block name or is empty (blank COMMON). The COMMON block names must not be identical

1 M a r c h 1 9 8 0 6 - 5 F D R 3 0 5 7

6 FORTRAN STATEMENTS

with names of subprograms called or FORTRAN library subroutines. Data items are assigned
sequentially within a COMMON block in the order of appearance. The loader program assigns
all COMMON blocks with the same name to the same area, regardless of the program or
subprogram in which they are defined. Blank COMMON data are assigned in such a way that
they overlap the loader program, thereby making the memory area occupied by the loader
program available for data storage.

Note
The form / / (with no characters except blanks between slashes)
may be used to denote blank COMMON.

The number of words that a COMMON block occupies depends on the number of elements, the
mode of the elements, and the interrelations between the elements specified by an
EQUIVALENCE statement COMMON blocks that appear with the same block name (or no
name) in various programs or subprograms of the same job are not required to have elements
within the block agree in name, mode, or order, but the blocks must agree in total words.
As an aid to system-level programming, the compiler defines absolute memory location '00001
as the origin of a COMMON block named 'LIST.
It is customary to assign an array called LIST into the labeled COMMON area called LIST, such
that the first word in this array is location '00001, the sixth word location '00006, etc., as in:

COMMON/LIST/LIST(l)
Effectively, the subscript of array LIST is the actual memory address. This feature is not
required when compiling in 64V mode.

COMMON blocks over 64K words long
The size of COMMON blocks and the arrays within them are limited only by the number of
segments available to the user. A total of 256 segments is available for assignments to users.
The size of a 64V mode program includes COMMON blocks and the procedure, linkage and
stack frames of the main program, subprograms and required library routines.

Usage: Any named COMMON or blank COMMON may be over 64K; no special syntax is
required. The only indication that a COMMON block is over 64K is in the concordance,
generated with the compiler's -XREFL option. The concordance address field for all items in an
over 64K COMMON block contains two 6-digit octal numbers rather than one. The first
number corresponds to a segment offset; the second number is the word offset.
Arrays in a COMMON block over 64K are treated as if they spanned a segment boundary
regardless of their size. Code normally generated for array references will not work for these
arrays. Programs (and subprograms) referencing these arrays must be compiled with the -BIG
option. (This also forces compilation in 64V mode).
A COMMON block over 64K must be explicitly declared over 64K in every program that
references the COMMON. Otherwise, the compiler will not generate special code for arrays
within that COMMON block.
Dummy argument arrays: If a dummy argument array may become associated with an array
that spans a segment boundary (through a CALL statement or function reference), the compiler
must be made aware of this when the subroutine or function is compiled (see below).

Example:
COMMON IBUF (1000,200)
CALL SUB (IBUF, 1000, 200)

END

F D R 3 0 5 7 6 - 6 1 M a r c h 1 9 8 0

FORTRAN STATEMENTS 6

SUBROUTINE SUB (IDUM, N, M)
DIMENSION IDUM (N, M)

*

t r

END
When subroutine SUB is being compiled, the compiler must be notified that dummy argument
array IDUM becomes associated with an array that spans a segment boundary (IBUF).
Code generated for an array that spans a segment boundary will work whether or not the array
actually spans a segment boundary. There are two methods to notify the compiler that a
dummy argument array may become associated with an array that spans a segment boundary.

1. Within the subroutine or function, dimension the dummy argument array
over 64K words. This method cannot be used when there are dummy
arguments or COMMON dimensions. Example:

SUBROUTINE S (IARRAY)
DIMENSION IARRAY (100000)

2. Compile the subprogram with the -BIG option. All dummy argument arrays
will be treated as arrays spanning segment boundaries. -BIG also forces
compilation in 64V mode. Example:

FTN SUB -BIG
The above discussion related only to dummy argument arrays. A dummy argument variable
may become associated with an element of an over segment boundary array, and the code
normally generated by the compiler will work correctly.
System and Library routines that require arrays as arguments must not be called with arrays
that span segment boundaries, unless these routines are recompiled with the -BIG option. This
includes the matrix manipulation routines in MATHLB.
Restrictions: There are a number of restrictions on over 64K COMMON blocks and arrays
spanning segment boundary. The compiler will issue an error message if any of these
restrictions are violated.

• An array may span segment boundaries, but no array element or variable may cross
a segment boundary. If the first word of a real number is in one segment, the second
word must be in the same segment. For this reason, the compiler must enforce the
following restriction: Any multiword variable or array of multiword elements must
be offset a multiple of its element length from the start of the COMMON block.
Thus, a double-precision variable or array (regardless of its dimension) must be
offset 0 or 4 or 8 words, etc. from the start of an over 64K COMMON block. This
restriction also applies to items EQUIVALENCEd to elements in an over 64K
COMMON block.

• Items in COMMON blocks over 64K cannot be initialized by a DATA statement Any
initialization of COMMON blocks over 64K must be done by assignment statements.
This restriction applies even if the item is in the first segment of an over 64K
COMMON block.

• A segment boundary spanning array must not appear unsubscripted in the list of an
I/O or ENCODE/DECODE statement. The equivalent functionality can be achieved
by using implied DO Loops.

Implementation notes and programming considerations: The code generated for a subscripted
array reference normally consists of instructions to load an index register with the subscript
followed by an indexed instruction that references the array element. This code sequence
cannot be used for a segment boundary spanning array reference because the index registers

1 May 1981 6-7 FDR3057

6 FORTRAN STATEMENTS

are only 16 bits wide and indexing never affects the segment number. A segment boundary
spanning array subscript is computed using 32-bit integer arithmetic and then added to the
array base address. This resultant address is stored in a temporary location and the array
element is referenced indirectly through the temporary location. Thus, on every reference to an
over segment boundary array, an execution speed and program size penalty is paid relative to a
normal array. For efficiency, all arrays under 64K words should be placed in COMMON blocks
under 64K.
The compiler requires that any COMMON block over 64K be allocated in contiguous segments.
It also requires that the starting address be a multiple of 4, the largest data type size (complex
and double precision floating point).
Calculating array size in words: The size of an array is the product of its dimensions multiplied
by the number of words per element. The number of words per element is determined by the
type of the arrays as follows:

Type Number o f Words Per I tem
I N T E G E R * 2 1
L O G I C A L 1
I N T E G E R M 2
R E A L (R E A L M) 2
C O M P L E X 4
D O U B L E P R E C I S I O N (R E A L * 8) 4

Example: REAL A(1000,44)
Number of Words = 1000 x 44 x 2 = 88000

DIMENSION statement
DIMENSION V1(I1), V2(I2), . . . Vn(In)

Declares the name of the array, the number of subscripts (IJ=J1, J2,... Jn; n= 1 to 7), and the
maximum value for the subscripts. This allocates the maximum storage requirement for the
array. In a subroutine, the subscript(s) in a dimension statement may be a variable, provided
this value is passed to the subroutine from the calling program.

EQUIVALENCE statement
EQUIVALENCE [kll, kl2, kl3 . . .), (k21, k22, k23 . . .)

Where each k is a variable, subscripted variable or array name. Each element in the list is
assigned the same memory storage by the compiler. An EQUIVALENCE statement equates
single variables to each other, entire arrays to each other, elements of an array to single
variables and vice-versa. If equivalences are established between variables of different modes,
the shorter mode is stored in the first words of the longer mode.

SAVE statement
SAVE VI, V2,. . . Vn

Where the Vs are local variables or array names. Arrays cannot be dimensioned in a SAVE
statement Any symbol name appearing in a SAVE statement cannot appear in a COMMON
statement or be EQUIVALENCEd to a COMMON element A labeled COMMON block (not
blank COMMON) may appear in the list if it is enclosed in slashes.

Note
In the current revision, inclusion of a COMMON block name
has no effect. This feature is included to allow compatibility
with the FORTRAN 77 standard.

* ■ >

FOR3057 6 - 8 7 M (, y 1 9 8 1

FORTRAN STATEMENTS 6

r

'

Variables listed in the SAVE statement are assigned local storage in the linkage frame (static)
rather than the stack frame (dynamic). Thus, the SAVE command has meaning only when the
program is compiled including the DYNM parameter (64V mode only). Symbol names in DATA
statements, SAVE statements or EQUIVALENCEd to names in these statements are stored in
the linkage frame. Only variables in the linkage frame can be initialized. Variables allocated to
the stack frame are not preserved from one subroutine CALL to the next
If the SAVE statement appears without a list of symbol names then all local storage is allocated
to the linkage frame.

EXTERNAL PROCEDURE STATEMENTS
CALL statement

CALL subroutine [(argument-1, argument-2, . . .,argument-n])
Where subroutine is a subroutine name and the arguments are a list (possibly empty) of the
arguments passed and to be returned. Subroutines may not CALL themselves unless the
program units are all compiled with the DYNM parameter (64V mode on Prime 350 or higher
computers).

EXTERNAL statement
EXTERNAL VI, V2, . . .,Vn

Where each v is declared to be an external procedure name. This permits the name of an external
function (such as COS) to be passed as an argument in a subroutine call or function reference.
DATA DEFINITION STATEMENT
DATA statement

DATA kl/dl/,k2/d2/, . . . kn/dn/
Allows initialization on variables or array element at load time. Each k is a list of variables or
array elements (with constant subscripts) separated by commas; eachd is a corresponding list
of constants of the same data mode as the variables and array elements in the list.

COMPILATION AND RUN-TIME CONTROL STATEMENTS
The following statements provide diagnostic tools for the programmer and are discussed in
more detail in the Debugging section (3) and the Compiler Section (2).

FULL LIST statement
Causes a listing of subsequent source code with a symbolic listing. Overridden by compiler
parameters.

INSERT statement
See $INSERT.

LIST statement
Causes a listing of subsequent source code with no symbolic listing. Overridden by compiler
parameters.

NO LIST statement
Causes a cessation of subsequent source code listing and of symbolic listing. Overridden by
compiler parameters.

1 M a y 1 9 8 1 q . q FDR3057

6 FORTRAN STATEMENTS

FULL LIST, LIST, and NO LIST may be used anywhere in the source program.

Item TRACE statement
TRACE VI, V2, . . . Vn

Each V is a variable or array name. Prints the value of the variable at each point in the program
where the variable is modified. Printout of a variable may be altered by another TRACE
command with that variable name. Trace coding is inserted into the program at compilation;
TRACE takes effect in source program physical order, not logical execution order.

Area TRACE statement
TRACE n

Causes values of the variables used in statement label n to be printed out during execution of the
code between the area TRACE statement and statement label n.

Note
Do not place an area trace statement in the range of another area
statement, unless both refer to the same statement label.

TRACE is overridden by the compiler global trace option -TRACE, but not by the -NOTRACE
option (see Section 2). It is possible to have the TRACE output written into a file instead of at the
user terminal. Prior to executing the program, switch the output to a file by the PRIMOS-level
command.

COMO filename
where filename is the file into which terminal output is to be written. After the program has
halted, output to the file is stopped and the file closed by:

COMO -END
The form of the command given here does not turn off output to the terminal. A complete
description of this command is given in the Prime User's Guide.

$INSERT statement
SINSERT insert-file

Insert into the program, at compilation time, the file whose pathname is insert-file. The
SINSERT command should not be nested; do not include a SINSERT command in a file which
will be inserted into a program by a SINSERT command.
SINSERT is used for:

• Insertion of COMMON specification into programs.
• Commonly used one-line functions.
• Data initialization statements.
• Parameter definitions, especially for the file management system, applications

library, MIDAS, etc.

ASSIGNMENT STATEMENTS

Assign a value to a variable
1. arithmetic A=B**2
2. logical (P, Q, R are logical variables) P=Q.OR.R, P=A.GT.B

Mixed mode
Data of different modes may be combined with one and another with the following restrictions:

18

FDR3057 6-10 1 May 1981

FORTRAN STATEMENTS 6

1. Logical data should not be combined with any other mode.
2. No operator can combine Double Precision and Complex data.
3. Subscripts and Control statement indexes must be integers (short or long).
4. Arguments of functions and subroutines must be. of the mode expected by the called

subprogram.
It is convenient to think of the arithmetic data modes as forming a hierarchy:

• COMPLEX or DOUBLE PRECISION
• REAL
• LONG INTEGER
• SHORT INTEGER

Whenever two data of differing modes are concatenated by an operator, the resulting mode is
that of the higher in the list, as in:

REAL + SHORT INTEGER is a REAL
CAUTION

If LONG INTEGERS are converted to REALs, there may be a
loss of precision. The rules for data mode conversion via
assignments (i.e., A=B) are given in Table 6-1. Conversion of
long (short) to short (long) integers by assignment is not
recommended as good practice; use the INTL and INTS
functions instead.

CONTROL STATEMENTS
ASSIGN statement

ASSIGN k TO i

Where k is a statement label and i is an integer variable. An ASSIGN statement must be
executed prior to an assigned GO TO.

CONTINUE statement

[statement-number] CONTINUE
Transfers control to the next executable statement. With the optional statement-number it is
usually used to indicate the end of the range of a DO loop.

DO statement
DO n i=ml, m2 [,m3]

Executes statements until and including the statement with label n; ml, m2, m3 are positive
integers (constants, parameters, or variables only — no expression or array elements) with
m2^ml, i is an integer variable which assumes the values ml, ml+m3, ml+2*m3, etc. ml is the
initial value, m2 the limit value, and m3 the increment. If m3 is not specified, the increment is
defaulted to 1.
DO loops may be nested; there is no syntactical limit to Ihe nesting of DO loops.
It is an undesirable programming technique to have the index variable appear as the initial,
limit, or increment values in the DO statement.
After the last execution of the loop, control passes to the next executable statement following
the terminal statemenl of the DO loop. This is called a normal exit.

CAUTION
ANSI standard FORTRAN specifies that the value of the index

1 M a y 1 9 8 1 6 - 1 1 F D R 3 0 5 7

6 FORTRAN STATEMENTS

variable is undefined after a normal exit from a DO loop. The
value of the index variable at this point is completely dependent
upon the specific compiler and how it performs its limit tests;
hence, the terminal value of the index variable will differ at
different installations. It is extremely bad programming to use
the terminal value of this variable as implicitly set. If the user
needs the value of this variable after a normal exit, its value
should be explicitly set by an assignment statement.

Note
The DO loop in Prime FORTRAN is a one-trip DO loop. That is,
the loop commands will be executed at least once even if the
initial value is not less than the limit value. If it is desired to
skip the loop under certain conditions, an IF statement
preceding the DO statement should be used. Control should be ^-.
transferred to a statement subsequent to the terminal statement
of the DO loop, not to the terminal statement

END statement
The final statement of program, subroutine, or external function. Tells the compiler that it has
reached the end of the source program.

END

Unconditional GO TO statement
G O T O k

Transfers control to statement labelled k.

Computed GO TO statement
GO TO (kl, k2 kn), i

Transfers control to statement labelled kj when integer expression i = j. If the value of i lies
outside the range 1 to n, then control passes to the next executable statement after the computed
GOTO.

Assigned GO TO statement
GO TO i[,(kl, k2 . . .,kn)]

Transfers control to statement labelled i. Prior to executing the assigned GO TO, a value must
be assigned to i using the ASSIGN command.
There is no syntactical limit to the number of labels in a computed or assigned GO TO.

Arithmetic IF statement
IF (e) kl, k2, k3

Where e is an arithmetic expression with an integer, real, or double precision value. If e<0
(negative) control is transferred to statement labelled kl, if e =0 (exactly), control is transferred
to statement labelled k2, and if e>0 (positive), control is transferred to statement labelled k3.

Logical IF statement
IF (e) statement

F D R 3 0 5 7 6 - 1 2 * M a y ™ 8 1

FORTRAN STATEMENTS 6

18

-

Where e is a logical expression which may be .TRUE, or .FALSE.; statement is any valid
executable statement except a DO or a logical IF statement. If e is true, the statement is
executed; if e is false, control passes to the next executable statement.

Note
An arithmetic IF may be the statement in a logical IF but this is
not recommended as a good programming practice. If the state
ment is an assignment statement, then the = must be on the first
line — not on a continuation line.

Table 6-1. Data Modes Rules for Assignment Statements (A=B)

To A (left-hand-side)

FROM B
{right-hand-
side
Integer,
Short

Integer,
Short

Integer,
Long Real

Double
Precision Complex

Assign Sign-
Extend
and
Assign

Float
and
Assign

DP Float
and
Assign

Float and
Assign to
Real Pari
(Imaginary
Part is Zero)

Integer,
Long

Truncate
and
Assign

Assign
Float
and Real
Assign

DP Float
and
Assign

Float and
Assign to
Real Part
(Imaginary
Part is Zero)

Real Fix Fix DP Evalu Assign to
and and Assign ate and Real Part
Assign Assign Assign (Imaginary

Part is Zero)
Double Fix Fix DP Evaluate NOT
Precision and and and Real Assign ALLOWED

Assign Assign Assign
Complex Fix Fix Assign NOT

and and Real ALLOWED Assign
Assign Assign Part
Real Part Real Pari

Assign: Transmit resulting value without change.
Real Assign: Transmit as much precision of the most significant part of the

resulting value as Real datum can obtain.
DP Evaluate: Evaluate, then DP float.
Float: Transform value to Real datum form.
DP Float: Transform value to Double Precision form.
Fix: Truncate fractional part and transform integral part to integer.
Truncate: Take 16 low-order bits and store in short integer datum.
Sign-Extend: Pad 16 high-order bits with 0's or l's if short integer is positive or

negative, respectively.

PAUSE statement
PAUSE [n]

Where n is an optional decimal number up to five digits. Halts the program, transfers control to
subroutine F$HT and prints ****PA n (R-identity) or ****PAUSE n (V-identity) at the

1 May 1981 6-13 FDR .30 5 7

6 FORTRAN STATEMENTS

keyboard. The value of n is printed in octal representation. Keying in START continues
operation of the program at the next executable statement following PAUSE.

RETURN statement
RETURN

Returns to the main program from a subroutine or external function. It must be the last logical
statement in the subroutine or external function.

STOP statement
STOP [n]

Where n is an optional decimal number of up to five digits. Halts the program, transfers control
to subroutine F$HT, prints ****ST n (R-identity) or ****STOP n (V-identity) at the keyboard
and returns control to the PRIMOS level. The value of n is printed in octal representation.

INPUT/OUTPUT (I/O) STATEMENTS
See Table 6-2 for list of FORTRAN device units.

Direct access READ and WRITE statements
The FORTRAN compiler and run-time library support direct access READ and WRITE
statements. READ and WRITE statements may contain a record number to randomly access file
records. With sequential access, record n-1 must be read or written before record n. The syntax
implemented is compatible with both IBM FORTRAN and new ANSI standard FORTRAN.
Usage: Special action is required by the user when creating and opening files to be used for
direct access I/O. Files used for direct access I/O should be DAM files. (Direct access I/O
statements may be used with SAM files but execution time will be longer.) If the file is
formatted, the ATTDEV subroutine must be called so that fixed length records are written. (The
ATTDEV subroutine is also used to set the record length.) DAM files are created by opening a
new file using the K$NDAM subkey in either a SRCHSS or TSRCSS call. (See Reference Guide,
PRIMOS Subroutines for details.)
The ATTDEV subroutine may be used to alter the mapping of FORTRAN units to file system
units or lo change the record size from the default of 60 words (120 characters). The records of a
direct access formatted file must be fixed length. This is done by setting the second argument of
ATTDEV to 8. The records of an unformatted file are fixed length by default. If the record length
of any file exceeds 66 words (132 characters), a COMMON declaration for FSIOBF must be
included. The size of FSIOBF must be as large as the largest record size. (See Changing record
size) below for details.)
A program that creates a direct access file cannot write record n before record n-1 has been
written. A separate program should be used. Once the file has been created, it can be read or
written in random order.
After a direct access I/O statement, the file is positioned at the record following the one just
transferred. If the direct access file is then accessed sequentially, using other forms of the
READ or WRITE statement, it is not necessary to include the record number. This enhances
performance by eliminating the positioning call.
Formatted files used for direct access I/O may be examined by the editor. They must not be
modified using the editor. The editor compresses records, giving them variable lengths; files
used for direct access I/O must have fixed length records.

IBM compatibility: The READ and WRITE statements are identical to IBM FORTRAN. The
DEFINE FILE and FIND statements of IBM FORTRAN are not supported. The record size in the
DEFINE FILE statement must appear in the ATTDEV call. The record size in the DEFINE FILE

F D R 3 0 5 7 6 - 1 4 1 M a y 1 9 8 1

~1

FORTRAN STATEMENTS 6

f-

r

statement is measured in bytes of 32-bit words rather than 16-bit words required by ATTDEV.
If the U specifier is used in the DEFINE FILE statement, the record size of the DEFINE FILE I 18
statement should be doubled for the ATTDEV call; otherwise the record size should be halved.
The ATTDEV call requires INTEGER*2 arguments. If the INTL option is used during
compilation, constants used as arguments in the ATTDEV calls must be converted to
INTEGER*2 by the INTS function (e.g.. INTS (8)).
There is no equivalent of the DEFINE FILE associated variable in Prime's implementation of
direct access files. In IBM FORTRAN, the value of the associated variable is the number of the
record thai follows the record just transferred.
Changing record size: The default formatted record length is 60 words (120 characters). A
larger record size can be set with Ihe ATTDEV subroutine. This subroutine has two functions:

• Change record size associated with a FORTRAN logical I/O unit number.
• Change the correspondence between the I/O unit number and the physical device.

The syntax is:

CALL ATTDEV (logical-unit,device,unit,record-size)

logical-unit The FORTRAN I/O unit number. This is the number used in READ
and WRITE statements (l=terminal, 2=paper tape punch/reader,
etc. See table 6-2).

device The position of the physical device in the device-type tables
(CONIOC). The acceptable values are:

1 User terminal
2 Paper tape punch/reader
7 Disk file system (Compressed ASCII)
8 Disk file system (Uncompressed ASCII)

unit The unit number for multi-unit devices (e.g., magnetic tape drive 0-
3). If device is Ihe disk file system (7 or 8) then unit is Ihe file unit
number (1-16)

record-size The maximum record size in INTEGER*2 words for the logical-
record. Each word will store 2 characters.

If the record size is to exceed 128 words (250 characters), the buffer used by internal FORTRAN
subroutines must be increased. This is done by loading user-created FSIOBF COMMON before
loading the FORTRAN library. Insert this statement in the user program:

COMMON/F$IOBF/array-name (size)
array-name An arbitrary name.
size The desired buffer size in INTEGER*2 words. Each word stores 2

characters.

CAUTION
It is not possible lo increase Ihe buffer size by loading a user-
created FSIOBF if the shared libraries are used. The buffer size
for the shared libraries is OK words.

PRINT statement
PRINT f [.list]

Prints the list of elements al the user terminal according lo the format specified in statemenl f.
Equivalent to WRITE (l.f) [list].

1 M a y 1 9 8 1 6 - 1 5
FDR3Q57

6 FORTRAN STATEMENTS

READ statements
For all READ statements: if END=a is included, then control is transferred to statement number
a if an end-of-file condition is encountered during the read. If ERR=b is included then control is
transferred to statement number b if a device or format error is encountered during the READ
statement.

list A list of variables and array names (separated by commas) into
which data are read.

18 [

1S|

Table 6-2. Devices and Their Default FORTRAN Unit Numbers
FORTRAN Number Device

(Unit No.)
1 User terminal
2 Paper tape reader or punch
3 MPC card reader
4 Serial line printer
5 Funit 1
6 Funit 2
7 Funit 3
8 Funit 4
9 Funit 5
10 Funit 6
11 Funit 7
12 Funit 8
13 Funit 9
14 Funit 10
15 Funit 11
16 Funit 12
17 Funit 13
18 Funit 14
19 Funit 15
20 Funit 16
21 9-track magnetic tape unit 0
22 9-track magnetic tape unit 1
23 9-track magnetic tape unit 2
24 9-track magnetic tape unit 3
25 7-track magnetic tape unit 0
26 7-track magnetic tape unit 1
27 7-track magnetic tape unit 2
28 7-track magnetic tape unit 3
29-139 Funit 17-127
140 Printer unit 0
141 Printer unit 1

Formatted READ statement
READ (u, f, [, END = a] [, ERR = b]) list

Causes data on FORTRAN unit u to be read into the variables/array names specification
according to the format of stalement f. If no list is given, one record is read and ignored.

FDR3057 6-16 1 July 1982

FORTRAN STATEMENTS 6

r

r

CAUTION
Hollerith formats should be avoided in FORMAT statements
associated with READ statements. The A format should be
used for strings.

Direct-access READ statements
R E A D (u ' r , f , E R R = b) l i s t I B M f o r m a t
R E A D (u , f , R E C = r , E R R = b) l i s t A N S I f o r m a t

A long or short integer constant or variable whose value is theu
FORTRAN unit number.

Note
The apostrophe (') is required in the IBM form of the direct
access READ and WRITE statements.

r The long or short integer expression whose value is the record
number to be accessed.

f The statement number of the format specifier (optional).
b The statement number to which control is transferred if a device or

format error is encountered during transfer (optional).

The END= specifier is not allowed in the direct access write statement. This restriction is
consistent with both IBM FORTRAN and the new ANSI standard FORTRAN.

Binary READ statement
READ (u, [, END = a] [, ERR = b]) list

Causes data on FORTRAN unit u to be read into the variables/array names specification list.
Enough records are read to satisfy all the list items. If more items are on the record than are
required by the list, the excess items are ignored. If no list is given, one record is read and
ignored.

CAUTION
If the list requires more data than are in the current record, then
the next record(s) are read until the list is satisfied. This is not a
clean programming technique and should be avoided.

List-directed READ statement
READ (u,* [, END = a] [, ERR = bl) list

List-directed I/O frees the programmer from including format statements for READs from free-
format input devices such as the user terminal. The input data is converted according to the data
type of items in the I/O list. Additionally, this feature provides a method to indicate in the input
data that an item in the I/O list is to remain unchanged by the READ statement
Delimiters: Values in list-directed input are separated by a blank, comma, or slash. A slash or
comma may be preceded and followed by any number of blanks. An end of record is treated as a
blank. A slash terminates a READ and leaves the values of the remaining items in the I/O list
unchanged. Two adjacent commas with no intervening characters except blanks will leave the
corresponding item in the I/O list unchanged. A list-directed READ will read any number of
records until a slash is encountered or until all items on the I/O list have been satisfied.

1 M a y 1 9 8 1 Q - 1 7 F D R 3 0 5 7

6 FORTRAN STATEMENTS

Example 1:
Source line: READ(1,*)A,B,C,
Input Data: 151..2E2
Result: A+ 151. B is unchanged. C+2.E2

Example 2:
Source line:
Input Data:

READ(1,*)I,J,K
5 -3 /

Result: 1= 5 J= -3 K is unchanged.
Numerical input: If an item in the I/O list is a long or short integer variable or array element, the
corresponding input field must contain a string of decimal digits optionally preceded by a + or -
sign, as in:

- 3 5 7 1 0 0 5 1 4 + 1 2 3 8 7
If a real or double precision item is in the I/O list, the corresponding input field must contain a
string of decimal digits with an optionally embedded decimal point. An exponent field may
follow in either E or D format, as in:

5 1 - 2 7 . 6 8 7 . 6 5 E - 1 4 8 6 3 D 2
. 5 0 3 + 2 6 5 .

The input field, corresponding to a complex item must contain two real numbers (as described
above), separated by a comma and enclosed in parentheses, as in

(1E2, -2.) (5.67E-6.8.09)
Character string input: A variable or array of any type can be set equal to a character string
using list-directed READ. A character string must be enclosed in single quotation marks in the
input data. Within a character string, a quotation mark is represented by two consecutive
quotation marks. A character string, regardless of length, matches a single item in the I/O list
whether it is a variable, array element, or whole array (represented by including the
unsubscripted array name in the I/O list). If the character string is shorter than the list item, the
rightmost characters of the list item are blank filled. If the character string islonger than the list
item, the rightmost characters of the character string are ignored. Characters are packed two
per word, as in:
Example 1:

Source:

Input Data:
Result:

Example 2:
Source:
Input Data:
Result:

INTEGER*2 IBUF(2)
READ (1*) IBUF
'ABC
IBUF(1)=AB IBUF(2)=C

READ(1,*) (IBUF(I), I=1,2),J
'GHIJ', 5 /
IBUF(1)='GH' IBUF(2)=5 J is unchanged.

Note

If the I/O list has been satisfied, a slash in the input data is
optional. A carriage return is the end of a record on a READ
from a User terminal and is treated as a blank on list-directed
READs.

WRITE statements
For all WRITE statements, if ERR=b is present, control is transferred to statement b if a device

FDR3057 6-18 1 May 1981

FORTRAN STATEMENTS 6

■

r

r

error is encountered during the WRITE statement.
list A list of variables and array names (separated by commas) from

which data are printed.

Formatted WRITE statement
WRITE (u,f [,ERR=b]) list

Causes data in the list to be written out on FORTRAN unit u according to the format state
ment f.

Direct-access WRITE statement
W R I T E (u ' r , f , E R R = b) l i s t I B M f o r m a t
W R I T E (u , f , R E C = r , E R R = b) l i s t A N S I f o r m a t
u A long or short integer constant or variable whose value is the

FORTRAN unit number.

Note
The apostrophe (') is required in the IBM form of the direct
access WRITE statements.

r The long or short integer expression whose value is the record
number to be accessed.
The statement number of the format specifier (optional).

b The statement number to which control is transferred if a device or
format error is encountered during transfer (optional).

The END= specifier is not allowed in the direct access writestatement. This restriction is
consistent with both IBM FORTRAN and the new ANSI standard FORTRAN.

Binary WRITE statement
WRITE (u [,ERR=b]) list

All words in the list are written into a record in binary format If there are insufficient data to
fill the record, it is padded out with zeroes; if there are more items than a record can hold,
multiple records are written automatically. If necessary, the last record is padded with zeroes.
Both READ and WRITE statements allow implied DO loops for transferred data between
arrays and device. In this case, the list could have a form such as:

(NAME1 (INDEX1), INDEXl = 1, 5, 2)

r

or

or
(NAMEl (INDEXl), INDEX2 (3, INDEXl), INDEXl = 1, 5)

((NAME1 (INDEXl, INDEX2), INDEX 1 = 1, m) INDEX2 = 1, n. p)
where m, n, and p are constant positive integers (constants, parameters, or variables).

CODING STATEMENTS
C number of ASCII characters to be transferred
I f o r m a t s t a t e m e n t l a b e l
a a r r a y n a m e
h'st I/O list of elements (same as in a READ or WRITE statement)

1 M a y 1 9 8 1 6 - 1 9
FDR3057

6 FORTRAN STATEMENTS

Formatted DECODE statement
DECODE (c,f,a[, ERR=sn]) list

Converts the first c characters in the array a from ASCII data into the I/O list elements accord
ing to the specified format f. If the optional error branch is inserted, a FORMAT/DATA
mismatch will cause a transfer to the statement labelled sn.
List-directed DECODE statement

DECODE (c, *, a [, ERR=sn]) list
Allows the user to input/decode data from free-format input devices such as the user terminal.
The requirements on input and delimiters are the same as for the list-directed READ statement
(see READ).

ENCODE statement

ENCODE (c,f,a.) list
Converts the elements of the I/O list into ASCII data according to format f and stores the first c
characters of the resultant string into array a.

FORMAT STATEMENTS
FORMAT statement

sn FORMAT (dFl dF2 dF3 . . . Fn)
s n M a n d a t o r y s t a t e m e n t n u m b e r . ^ ^
Fl, etc. A format field description.
d A format delimiter (, or /). The first d may be null.

The right parenthesis marks the end of a record.
Delimiters:

/ (slash) proceed to next record
, (comma) remain within current record

The maximum record length is determined by the type of device or storage unit.
Format field descriptor: Tables 6-3 and 6-4 summarize the field descriptors available in Prime
FORTRAN, where n (positive integer constant) is the number of times the basic field descriptor
is to be replaced, w (positive integer constant) is the total width of the field in columns (or
characters).
d (non-negative integer constant) is the number of digits to the right of Ihe decimal point. (See
format G output for an exception to this.)
Repetition: All field descriptors except those marked by an * in Tables 6-3 and 6-4 (X,H,B) can
be assigned a repeat count causing the descriptor to be used that number of times in succession.

FORMAT (3E10.5) and FORMAT (E10.5, El0.5, E10.5) are equivalent.
Groups of descriptors (including X,H,B,) may be enclosed in parentheses and the entire group
assigned a repeat count.

FORMAT (2(3Gll.6,5X)) and FORMAT (3G11.0,5X,3Gll.6,5X) are equivalent.

Repeat groups have a maximum nesting of ten levels.
FORMAT (3(2(10F.7,3X),I2,5X))

is permissible.

F D R 3 0 5 7 6 - 2 0 1 M a y 1 9 8 1

FORTRAN STATEMENTS 6

18

-

Rescanning format lines: If the format list is exhausted before the input/output list, the format
list is repeated. Repetition starts at the opening (left) parenthesis that matches the last closing
(right) parenthesis in the format list. The parentheses around the format list itself are used only
if there are no other parentheses. Any repeat count preceding the rescanned format is in effect.

Output

Input

The current record is padded with blanks and a new record is
started.
The remainder of the current record is skipped and the device
advanced to the beginning of the next record

Table 6-3. Results of Formats in Output Statements
F O R M A T O U T P U T
snFw.d

Floating
snEw.d

Exponential
snGw.d

General

Prints Real or Double Precision Numbers as mixed output (no
exponent) with as many significant figures as the data type
allows, w is the total field width and must allow one position for a
decimal point and one for a minus sign (if negative numbers are to
be printed), d is the number of decimal places (right of decimal
point). Numbers are right justified. Leading zeroes are inserted for
numbers less than 1; trailing zeroes are used to fill the decimal
places if necessary. Only minus signs are printed. If total field
width is too small, the number is truncated and a $ printed if
positive, a = if negative. If the decimal section is too small, the
number is rounded.
Prints Real or Double Precision numbers as a number with a
magnitude between 0.1 and 0.9999999 times an exponent. The
field width w must allow for a minus sign (if one is to be printed), a
decimal point, and three or four positions for the exponent rep
resentation (see below). The numberd sets the number of places to
the right of the decimal point — the maximum is seven. The
representation with magnitude less than 1 may be overridden
using scale factors.

Exponent Value
wxyz= -9999 to -1000

xyz= -999 to -100
yz= -99 to -10

z = - 9 t o 9
yz= 10 to 99

xyz= 100 to 999
wxyz= 1000 to 9999

Exponent Representation
=wxy (fourth digit lost)
-xyz (no E)
E-yz
E-z or
E y z
+xyz
Swxy

E z

(noE)
(fourth digit lost)

Width
4
4
4
3
4
4
4

Prints Real or Double Precision numbers in F or E format
according to the magnitude of the number and the decimal place
specifier - d.

M a g n i t u d e E f f e c t i v e F o r m a t
0 . 1 t o 1 . 0 F (w - 4) . d , 4 X
1 . 0 t o 1 0 . 0 F (w - 4) . (d - l) , 4 X

10**(d-2) to 10**(d-l) F(w-4) .1, 4X
10**(d-l) to 10**d F(w-4) .0, 4X
O u t s i d e R a n g e E w . d

Truncation is performed as for E and F formats.

1 May 1981 6-21 FDR3057

6 FORTRAN STATEMENTS

snDw.d

Double Precision

Prints Double-Precision Numbers only in an exponential format
similar to the E format except that the letter D is used instead of E
and that d has a maximum value of 14.

wX
Space

Writes w spaces into the output record (negative w backspaces for
replacing).*

T w

Tab

Positions output pointer to column w in the output record. Back
tabbing is permitted.
Example: (T1,40A2,T15,F9.3)

wHclc2 . . .cw
Hollerith

Prints the string clc2 . . . cw.*
1. Does not require an item in the output list
2. Need not be followed by a delimiter.

n A w

ASCII

Prints Integer, Real, Complex, or Double Precision variables as
ASCII characters, w is number of characters per variable or array
name. Output is right justified and padded with spaces.

nLw
Logical

Prints logical variables: +1 prints as T, 0 prints as F. Output is right
justified and padded with spaces. If w<l there is no output.

nlw

Integer

Prints contents of integer (short or long) variables or array names
as a string of integers (no decimal points). If string is longer than
field width w then number is right truncated and preceded by a S
if positive and = if negative. Minus signs are printed but not plus
signs.

B'string'

Business

Prints templated numerical output for business purposes.
Features include: Fixed and floating signs, trailing signs, plus sign
suppression, trailing minus change to 'CR', fixed and floating S,
field filling, leading zero suppression, insertion of commas.
Length of string determines field width; if number is greater than
field width then oupul is printed as stringof asterisks. See text for
details on this format*

*No repeal counf is allowed with the format specifier itself, bill the format specifier may be
included in a group repetition.

Formats as variables: It is possible to enter format statements at run time by any method of
building this format as text string and loading it into an array. The array can later be referenced
in lieu of a FORMAT statement by the READ or WRITE statements that handle the data.
Arrays to be used for this purpose must be assigned as integer type and must be dimensioned to
accommodate the format description, at two characters per word. The format description is
loaded into the array by a READ statement thai references a type A format statement:

DIMENSION FORM (6), TEXT (80)
INTEGER FORM
READ (1,20) FOR^l

20 FORMAT (6A2)
WRITE (l,FORM) (ARG (I) , 1=1,3)

These statements provide for an output format specification such as (3(F7.3,I7)) lo be entered at
run time. Note that the specification must include opening and closing parentheses but not the
word FORMAT.
B-Format: The B-Format is used in printing business reports where it is desirable to fill number
fields to prevent unauthorized modifications (as on checks), suppress leading zeroes and plus

FDR.7057 6-22 1 May 1981

FORTRAN STATEMENTS 6

signs, print trailing minus signs (accounting convention) and convert minus signs to CR (for
indicating credit entries on bills). The form of the B-field specifiers is:

B'string'
The length of the string determines the field within. If the width is too small for the number,
then the output will be a string of asterisks filling the field. Legal characters for the string are:

+ -S , * Z #.CR

Table 6-4. Results of Formats in Input Statements
F O R M A T I N P U T
snFw.d
Floating
snEw.d

Exponential
snGw.d
General
snDw.d
Double-Precision

nLw

Logical

External numbers may be represented as integers, mixed in
tegers, or scaled numbers (with exponents). Leading blanks are
treated as zeroes; imbedded and trailing blanks are ignored. The
implied decimal point is placed to the left of the first d digits
counting from the right (if there is no decimal point in the
external number). A decimal point in the external number
overrides the positional decimal point. The decimal exponent (D
or E) and the exponent value are a unit; both must be included or
omitted. All numbers are assumed positive unless a minus sign is
present.
All numbers are initially converted internally to double-precision
numbers; if entered in E,F, or G format, they are truncated.

wX
Space

Skips w columns in the input data (negative w backspaces to
reload record).*

Tw
Tab

Tabs to column w in the input record.

wHclc2 . .
Hollerith

. cw NOT USED*

nAw

ASCII

Stores ASCII characters in Integer, Real, Complex, or Double-
Precision variables. If input is greater than storage available in
variables, only the leftmost characters are stored.
Stores true/false in internal representation based upon first non-
space characters in the input data (all others ignored). If T it is set
to+1; if F it is set toO; if anything else it is set to 0 and the error flag
is set (use OVERFL to look at error flag).

n l w

Integer

Stores external numbers in integers. If no sign is present, a plus
sign is assumed. A sign or blank is counted as one character
position. No decimal points are allowed. If there are more
numbers than the field width, w, only the left-most w characters
are stored.

B'string'
Business

NOT USED5

*No repeat count is allowed with the format specifier itself, but the format specifier may be
included in a group repetition.

1 March 1980 0-23 FDR3057

6 FORTRAN STATEMENTS

PIUS (n

If only the first character is +, then the sign of the number (+ or -) is printed the leftmost
portion of the field (Fixed sign). If the string begins with more than one + sign, then
these will be replaced by printing characters and the sign of the number (+ or -) will be
printed in the field position immediately to the left of the first printing character of the
number (floating sign). If the rightmost character of the string is +, then the sign of the
number (+ or -) will be printed in that field position following the number (Trailing
sign).

Minus (-):
Behaves the same as a plus sign except that a space (blank) is printed instead of a + if the
number is positive (Plus sign suppression).

Dollar sign ($):
A dollar sign ($) may at most be preceded in the string by an optional fixed sign. A
single dollar sign will cause a $ to be printed in the corresponding position in the output
field (Fixed dollar).
Multiple dollar signs will be replaced by printing characters in the number and a single
$ will be printed in the position immediately to the left of the leftmost printing character
of the number (Floating dollar).

Asterisk (*):
Asterisks may be preceded only by an optional fixed sign and/or a fixed dollar.
Asterisks in positions used by digits of the number will be replaced by those digits; the
remainder will be printed at asterisks (Field filling).

Zed (Z):
If the digit corresponding to a Z in the output number is a leading zero, a space (blank)
will be printed in that position; otherwise the digit in the number will be printed
(Leading-zero suppression).

Number sign (#):
#'s indicate digit positions not subject to leading-zero suppression; the digit in the
number will be printed in its corresponding portion whether zero or not (Zero non-
suppression).

Decimal point (.):

Indicates the position of the decimal point in the output number. Only #'s and either
trailing signs or credit (CR) may follow the decimal point.

Comma (,):
Commas may be placed after any leading character, but before the decimal points. If a
significant character of the number (not a sign or dollar) precedes the comma, a , will be
printed in that position. If not preceded by a significant character, a space will be
printed in this position unless the comma is in an asterisk field; then an * will be printed
in that position.

Credit (CR):
The characters CR may only be used as the last two (rightmost) of the string. If the
number is positive, 2 spaces will be printed following it; if negative, the letters CR will
be printed.

See Table 6-5 for examples of B-Format usage.

F D R 3 0 5 7 6 - 2 4 1 M a r c h 1 9 8 0

FORTRAN STATEMENTS 6

Scale factors (D,E,F, and G Formats): a scale factor designator for use with the F,E,G, and D
descriptors causes a multiplication by a power of 10. The form is:

nP (represented as s in Tables 6-3 and 6-4)
Where n, the scale factor, is an integer constant with an optional minus sign. Once a scale factor
has been specified, it applies to all subsequent F,E,G, and D field descriptors, until another scale
factor is encountered. If n=0, an existing scale factor is removed. The scale factor has no effect
on type I,A,H,X,L, or B descriptors.
E and D output scale factor: Before output conversion, the fractional part of the internal number
is multipled by 10**n and the exponent is decreased by n.
F output scale factor: The internal number is multiplied by 10**n.
G output scale factor: The scale factor has an effect only if the internal number is in a range that
uses effective E conversion for output. In this case, the effect of the scale factor is the same as in
the corresponding E conversion.
D,E,F,G, input scale factor: The internal value is formed by dividing the external number by
10**n. However, if the external number contains a D or E exponent, the scale factor has no
effect.

r

Table 6-5. Examples of B-Format Usage
Number Format Output Field
123 B-!Mr#r 0123
12345 B'####' * * * *
0 B ' i i i i ' 0000
123 B'ZZZZ" 123
1234 B'ZZZZ' 1234
0 B'ZZZZ1
0 B'ZZZ#'
1.035 B'#.#r 1.04
0 B»».##« 0.00
1234.5C B'ZZZ,ZZZ,ZZ#. ##■ 1,234.56
123456. 78 B 'ZZZ,ZZZ,ZZ#. #r 123,456.78
0 B'ZZZ,ZZZ,ZZfr. it1 0.00
2 B ' + W +002
-2 B'+##r -002
2 B'-ZZ#'
- 2 B'-ZZfT - 2
234 B'ZZZZZ+' 234+
-234 B'ZZZZZ+' 234-
234 B'ZZZZZ-1 234
-234 B'ZZZZZ-1 234-
12345 B'ZZZ,ZZ#CR' 12,345
-12345 B»ZZZ.ZZ#CR' 12,345CR
123 B'+++,++#.##' +123.00
-123 B+++,++#.#»' -123.00
98 B^ZZZZZZr $ 9 8
98 B'$$$$$$$fr« $98
156789 B•$* * * , * * * , * *# .#r $****156,789.00

1 May 1981 6-25 FDR3057

6 FORTRAN STATEMENTS

Formatted printer control: The first character of each ASCII output record controls the
number of vertical spaces to be inserted before printing begins on the line printer.

First Character Effect
Space One l ine

0 T w o l i n e s
1 Form feed — first line of next page

(effective only on devices with
mechanized form feed)

+ No advance — print over previous
line (line printer only)
Three Lines

Othe r One l i ne

In all cases the control character is not prinled.

DEVICE CONTROL STATEMENTS
For physical positioning of sequential access devices.

BACKSPACE statement
BACKSPACE u

Repositions FORTRAN unit u so that the preceding record is now the next record. If the unit is
at its initial point, this command has no effect. BACKSPACE also supports disk files.

18

ENDFILE statement

ENDFILE u
Writes an end-of-file mark on FORTRAN unit u indicating the end of a sequential file for
magnetic tape. Closes a disk file on FORTRAN unit u.

REWIND statement

REWIND u

Repositions FORTRAN unit u to its initial point. Does not close or truncate disk file.

FUNCTION CALLS
Functions are called by means of assignment statements in which the right-hand side is an
expression in the form:

name (argument-1,argument-2, . . . argument-n)
Where name is the name of the function called (COS,SIN, etc.) and argument is a non-empty list
of arguments to the function separated by commas. The data modes of the arguments must be
the same as the data modes in the definition of the function. There is no syntactical limit to the
number of arguments.

FDR3057 6-26 1 May 1981

FORTRAN STATEMENTS 6

r SUBROUTINE CALLS
Subroutines are called from a program by the statement:

Call name [(argument-1,argument-2, . . . argument-n)]
name is the symbolic name assigned by the SUBROUTINE statement beginning the subroutine
subprogram. The argument is a list of arguments, some of which are passed to the subroutine by
the calling program, and the remainder are dummy arguments whose values are calculated by
the subroutine and returned to the main program. The arguments in the main program must
agree in number, order, and mode with the arguments used in the subroutine subprogram.
There is no syntactical limit to the number of arguments.

CAUTION
Do not place constants in the argument list of a subroutine or
function where a value is to be returned to the calling program.
This will cause the constant to be altered and produce un
desirable results.

~

r
1 M a y 1 9 8 1 6 - 2 7 F D R 3 0 5 7

FORTRAN function
and subroutine structure

FUNCTIONS

There are four types of functions; all are called in the same manner (see Section 6).

Prime FORTRAN library functions
These library subprograms (see PRIMOS Subroutine Reference Guide andSection 8) which are
called automatically by the compiler as required and appended to the main program during
loading.

Prime extended intrinsic functions
These are a collection of functions designed to increase the efficiency of Prime FORTRAN in
logical processing of integers. They are automatically inserted in the program by the compiler
as required.

User-defined function subprograms
FUNCTION subprograms can be created by the user and compiled separately. This permits
them to be used in the same way as library functions.
FUNCTION subprograms must be prepared as separately compiled subprograms that produce
a single result, in the following format:

mode FUNCTION name (argument-1, argument-2,. . .argument-n)

(Any number of FORTRAN statements which perform the required calculations, using
the supplied arguments as values.)

name = Final calculation

RETURN

FUNCTION statement: The FUNCTION statement, which must be the first statement of a
FUNCTION subprogram, assigns the name of the function and idenlifies the dummy argu
ments. In Ihe preceding example, name is a symbolic name assigned to identify the function,
and each argument is a dummy argument. There is no syntactical limit to the number of argu
ments. The function name must conform to the normal rules for all symbolic names with regard
to number of characters, etc. Implicit result mode typing occurs according to the first letter of
the name. Implicit mode typing can be overridden by preceding the word FUNCTION with one
of the mode specifications. The function name must differ from any variables used in the func
tion subprogram or in any main program which references Ihe function.

l M a r c h m a t) 7 - 1 F D R 3 0 5 7

7 FORTRAN FUNCTION AND SUBROUTINE STRUCTURE

Body of subprogram: The body of the function subprogram can consist of any legal FORTRAN
statements except SUBROUTINE, BLOCK DATA, or other FUNCTION statements. The state
ments that evaluate the function use constants, parameters, variables, and expressions in the
normal way. The program must produce a single result for a given set of argument values. The
subprogram must equate the assigned symbolic function name to the result, by using name on
the left side of an assignment statement. It is the function name itself, used as a variable, that
returns the result to the main program.
RETURN statement: The RETURN statement consists of a single word RETURN. It terminates
the subprogram and returns control to the main program. The RETURN statement must be the
last statement in the subprogram (logically, not physically; that is, it must be the last statement
to which control passes).
Statement functions
Statement functions are embedded in the coding of the main program and are compiled as part
of the main program. Any calculation that can be expressed in a single statement, and produces
a single result, may be assigned a function name and referenced in the same way as a library
function. A statement function is defined in the form:

name (argument-1, argument-2,. . .argument-n) = expression
where name is the symbolic name assigned to the function and each argument is a dummy vari
able that represents one of the arguments.
The following rules apply lo all functions:

1. The name may consist of one to six alphanumeric characters, the first of
which is alphabetic. It must differ from all other function names and
variable names used in the main program.

2. The argument list follows Ihe name and is enclosed in parentheses. There
must be al least one argument. Multiple arguments are separated by
commas. Each argument must be a single nonsubscripled variable. These
arguments are only dummy variables, so their names may be the same as
names appearing elsewhere in the program. The dummy variable names do
indicate argument mode, however, by implicit or explicit mode typing.
There is no syntactical limit to the number of arguments.

3. During each call of a function, the values of the variables supplied as the
arguments must be in the same mode as the arguments were when the func
tion was defined.

4. Implicit mode typing of the result of a function is determined by the first
letter of the function name. Functions that begin with IJ,K,L,M, or N pro
duce INTEGER results; others produce REAL results. Regardless of the first
letter, the result mode can be set by an appropriate mode specification pre
ceding the function definition statement.

5. The expression that defines the function may use library functions, pre
viously defined function statements, or FUNCTION subprograms; but not
the function itself. Dummy variables cannot be subscripted.

0. Variables in the expression that are not stated as arguments are treated as
coefficients — i.e., are assumed to be variables appearing elsewhere in the
main program.

7. Statement functions must be defined following specification and DATA
statements but before the first executable statemenl of a program.

SUBROUTINES
Some types of subroutines include:

FDR3057 7 - 2 1 M a r c h 1 9 8 0

FORTRAN FUNCTION AND SUBROUTINE STRUCTURE 7

PRIMOS system subroutines
These invoke the PRIMOS system to perform the actual work. They allow file transfer, attach
ing, etc. (See PRIMOS Subroutines Reference Guide).

Application library subroutines
These handle file manipulation (opening and closing, reading, and writing, etc.) and data trans
fers, greatly enhancing the capability of the FORTRAN language (PRIMOS Subroutines Refer
ence Guide).

FORTRAN math subroutines

These handle mathematical calculations such as matrix multiply and inversion, permutations,
etc. (See PRIMOS Subroutines Reference Guide).

User-defined subroutines
Called in the same manner as those supplied with the system. They are constructed as follows:

SUBROUTINE name [(argument-1, argumenl-2, . . .argument-n)]

(Any number of FORTRAN statements which perform the required calculations, using
the supplied arguments, if any. as values.)

RETURN
END

SUBROUTINE statement: The SUBROUTINE statement, which must be the first statement of
a SUBROUTINE subprogram, assigns the name of the subprogram and identifies the dummy
arguments, if any.
The subprogram name must conform to the normal rules for symbolic names with regard to the
number of characters, but Ihe first letter does not set Ihe data mode of the result The name must
be unique to both Ihe subprogram and a main program which calls il.
The argument list usually consists of a series of dummy variables which are processed by the
subroutine and return arguments to the main program. Each argument may bea variable,array,
or function name. If an argument is the name of an array, it must be mentioned in a DIMEN
SION statement following Ihe SUBROUTINE statemenl.
There is no syntactical limit lo the number of arguments. A subroutine with no arguments is
allowable. Such a subroutine mighl obtain arguments from, and return results lo, COMMON.
Or il mighl be used to output a message or control function to a peripheral device.

CAUTION
Arguments thai return values to the main program must nol be
constants or expressions in Ihe calling sequence.

Body of a subroutine:The body of the subroutine can consist of any legal FORTRAN statements
except SUBROUTINE, BLOCK DATA, or FUNCTION statements. The results of calculations
may be stored in variables used by both the subprogram and main program, or they may be
placed in COMMON. Variables may be used freely on either the right or left side of the equal

1 M a r c h 1 9 8 0 7 - 3 F D R 3 Q 5 7

7 FORTRAN FUNCTION AND SUBROUTINE STRUCTURE

sign in assignment statements. Each variable that represents a result must appear on the left
side of al least one assignment statement, in order to present the result to Ihe main program.
The subroutine is terminated by a RETURN statemenl (described previously). The last phy
sical statemenl in a subroutine must be an END statement

FDR30S7 7 _ 4 l M a r c h 1 9 8 0

FORTRAN
function reference
_ _ — — — — — — ^ —

FORTRAN FUNCTION LIBRARY
The following functions are available to perform mathematical and logical operations. These
functions are part of the FTNLIB library file for the R-identity and the PFTNLB and IFTNLB
library files for the V-identify. The data mode(s) expected in the argument list and the data
mode of the value returned are shown for each function in the list. The following abbreviations
are used:

CP Complex number
DP Double-precision floating-point number
I Integer (short or long)
j Integer (long)
SP Single-precision floating-point number

Additional detail on Ihe functions themselves (rather than their operations) will be found in the
Reference Guide. PRIMOS Subroutines.

Trigonometric functions
The arguments of the trigonometric functions COS. CCOS, DCOS, SIN. CSIN, and DSIN are in
radians, not in degrees.

The IMPLICIT statement and FORTRAN intrinsic functions

Changing FORTRAN'S typing conventions with the IMPLICIT statement has no effect on the
intrinsic functions. However. I he random number generators, RND and IRND. are not intrinsic
functions. II the IMPLICIT statement changes the default typing of I or R and Ihe random num
ber functions are used in the program, then these functions must be typed explicitly as REAL*4
(for RND) and INTEGERS (for IRND).

V-Mode FORTRAN library
Certain single-argument scientific subroutines in Ihe V-mode FORTRAN library will be auto
matically replaced by the compiler with their short call versions, identified by the suffix SX.
These SX versions execute faster than their regular counterparts.
The SX versions are not directly accessible to the FORTRAN programmer (and have different
calling sequences)' They will only be noticeable at the load-map level.

Mixing long and short integers
Short integers occupy one word of memory, long integers two words. When long integers are
converted to short integers, the 16 low order bits of Ihe long integer are stored in the short
integer. When a shorl integer is converted lo a long integer, the low order word is set equal to the
short integer; the high order word is sign-extended (padded with 0's or l's according to the sign
of the short integer. + or -). If it is necessary, in a program, to convert between integer modes, it
is strongly recommended that this be done with the intrinsic functions: INTL, INTS. (In the
following, it is assumed that all variable names beginning with I have been declared to be short
integers and all variable names beginning with J to be long integers.)

1 M a r c h 1 9 8 0 8 - 1 F D R 3 0 S 7

8 FORTRAN FUNCTION REFERENCE

To convert between integer modes, use:

J = INTI. (I)
I = INTS (J)

• '

If a long (or short) integer is assigned the value of a short (or long) integer, mode conversion
wil also occur. This is not considered to be good programming practice and is discouraged.
(See Assignment Statements in Section 6).
In functions which accept mixtures of short and long integers in the argument list, the short
integers will be internally converted to long integers (with sign-extension) and the value
determined. The value will be calculated as a long integer. For these functions it is recom
mended thai t he left-hand side of the assignment statement be a long integer. Conversion to a
short integer should be explicit, not implicit.

19

JX = AND (JA, JB, IC)
is less desirable than

IX = AND ((A, (B, INTL (IC))
and

IY = AND (JA, JB, IC)
is less desirable than

IY = INTS (AND (JA, JB, INTL (IC)))
The INTS and INTL functions will take as arguments short integers (1NTEGER*2), long inte
gers (INTEGER*4), single-precision floating-point numbers (REALM), and double-precision
floating-point numbers (REAL*8) and return either a shorl (INTS) or a long (INTL) integer.
In general, the logical functions AND, OR, and XOR and the minimum/maximum functions will
return a long integer if ony of the arguments are long integers. The NOT function returns an
integer of the same mode as its argument. The shifting and truncating functions LS, LT, RS, RT,
and SHFT return an integer of the some mode as their first argument, that is, the integer on
which shifting and/or truncation is to take place.
The INT, IDINT, IFIX, MAXl and MINI functions: The results of these functions will be the
default INTEGER type for the module. That is, if compilation uses the -INTS (default) option,
then the mode of INT. IDINT, IFIX, MAXl and MINI will be INTEGERS. If compilation is per
formed with the -INTL option, then their mode will be INTEGERM.

FORTRAN functions
ABS

AIMAG

AINT

ALOG

Calculates the absolute value of the argument
SP = ABS (SP)
Converts the imaginary part of a complex number to a single-preci
sion floating-point number.
SP = AIMAG (CP)
Truncates a single-precision floating-point number to a single-pre
cision floating-point number whose value is integral.
SP = AINT (SP)
Computes the natural logarithm (base e) of the argument. If the
argument is not positive, the error LG is generated.
SP = ALOG (SP)

FDR3057 8-2 I July 1982

FORTRAN FUNCTION REFERENCE 8

ALOG10

AMAXO

AMAX1

AMINO

AMIN1

AMOD

AND

ATAN

ATAN 2

CABS

CCOS

CEXP

CLOG

CMPLX

CONJG

COS

CSIN

Computes the base-10 logarithm of the argument If the argument is
not positive, the error LG is generated.
SP = ALOG10 (SP)
Finds Ihe maximum value in a variable list of integers. The list may
be a mixture of long and short integers.
SP = AMAXO (11,12 In)
Finds Ihe maximum value in a variable list of single-precision
floating-point numbers.
SP = AMAX1 (SP1,SP2,. . .,SPn)
Finds the minimum value in a variable list of integers. The list may
be a mixture of long and short integers.
SP = AMINO (11,12,. . MIn)
Finds Ihe minimum value in a variable list of single-precision float
ing-point numbers.
SP = AMIN1 (SP1,SP2,. . .,SPn)
Computes Ihe remainder when one single-precision floating-point
number (SPl) is divided by another (SP2).
SP = AMOD (SP1,SP2)
Performs a logical AND operation, bit by bit. on a variable list of
integers, long and/or short.
I = AND (11,12,. . .,In)
Calculates ihe principal value, in radians, of the arctangent of Ihe
argument.
SP = ATAN (SP)
Calculates the principal value, in radians, of the arctangent of one
single-precision floating-point number (SPl) divided by another
(SP2). If both arguments are zero, the error message AT is
generated.
SP = ATAN2 (SP1,SP2)
Computes the absolute value of a complex number, returning a
single-precision floating-point number as the result
SP ■ CABS (CP)
Computes the cosine of a complex number.
CP = CCOS (CP)
Calculates the exponential of a complex number.
CP = CEXP (CP)
Calculates Ihe natural logarithm (base e) of the argument
CP = CLOG (CP)
Converts two single-precision floating-point numbers into a com
plex number. The first argument becomes Ihe real part of Ihe com
plex number; the second argument becomes the imaginary part,
CP = CMPLX (SP1,SP2)
Computes the conjugate of a complex number.
CP = CONJG (CP)
Computes Ihe cosine of a single-precision floating-point number.
SP = COS (SP)
Computes the sine of complex number.
CP = CSIN (CP)

l March 1980 8-3 FDR3057

8 FORTRAN FUNCTION REFERENCE

CSQRT

DABS

DATAN

DATAN2

Calculates the square root of a complex number.
CP = CSQRT (CP)
Computes the absolute value of a double-precision floating-point
number.
DP = DABS (DP)
Computes, in radians, the principal value of the arctangent of the
argument
DP = DATAN (DP)
Calculates the principal value, in radians, of the arctangent of one
double-precision floating-point (DPI) divided by another (DP2). If
both arguments are zero, the error message DT is generated.
DP = DATAN2 (DP1,DP2)

DBLE

DCOS

DEXP

DIM

DINT

DLOG

DLOG2

DLOG10

DMAX1

DMIN1

DMOD

Converts a single-precision floating-point number to a double-pre
cision floating-point number.
DP = DBLE (SP)
Computes the cosine of a double-precision floating-point number.
DP = DCOS (DP)
Computes the expontial of a double-precision floating-point
number.
DP = DEXP
Computes the positive difference between two single-precision
floating-point numbers.
SP = DIM (SP1,SP2)
Truncates the fractional part of a double-precision floating-point
number.
DP = DINT (DP)
Computes the natural logarithm (base e) of a double-precision
floating-point number. If the argument is not positive, the error
message DL is generated.
DP = DLOG (DP)
Computes the base-2 logarithm of a double-precision floating-point
number. If the argument is not positive, the error message DL is
generated.
DP = DLOG2 (DP)
Computes the base-10 logarithm of a double-precision floating
point number. If the argument is not positive, the error message DL
is generated.
DP = DLOG 10 (DP)

Finds the maximum value among a variable list of double-precision
floating-poinl numbers.
DP = DMAX1 (DP1,DP2,. . .,DPn)
Finds the minimum value among a variable list of double-precision
floating-point numbers.
DP = DMIN1 (DP1,DP2,. . .,DPn)
Computes the remainder when one double-precision floating-point
number (DPI) is divided by another (DP2). If DP2 is zero, the error
message DZ is printed.
DP = DMOD (DP1.DP2)

FDR3057 1-4 1 March 1980

FORTRAN FUNCTION REFERENCE 8

DSIGN

DSIN

DSQRT

EXP

FLOAT

IABS

IDIM

IDINT

IFIX
INT

INTL

INTS

IRND

ISIGN

LOC

Combines the magnitude of one double-precision floating-point
number (DPI) with sign of a second (DP2).
DP = DSIGN (DP1,DP2)
Computes the sine of a double-precision floating-point number.
DP = DSIN (DP)

Computes Ihe square root of a double-precision floating-point
number. If the argument is negative, the error message SQ is
generated.
DP = DSQRT (DP)
Computes the exponential of a single-precision floating-point
number. If there is an exponent underflow or overflow, the error
message EX is generated.
SP = EXP (SP)
Converts an integer to a single-precision floating-point number.
The function will accept either a shorl or a long integer as the
argument.
SP = FLOAT (I)

Computes the absolute value of an integer. The argument may be
either a long or short integer.
I = IABS (I)
Computes Ihe positive difference between two integers. The func
tion will accept any mixture of short and long integers.
I - IDIM (11,12)
Converts a double-precision floating-point to an integer.
I = IDINT (DP)
Converts a single-precision floating-point number to an integer.
Both functions an; included in the library lo ease conversions from
other systems.
I = IFIX (SP)
I = INT (SP)
Converts its argument to a long integer.
J = INTL (I)
Converts its argument to a short integer.
I = INTS (J)
Invokes the random number generator
12 = IRND (II)
I I O p e r a t i o n
>0 Initializes the random number gen

erator
= 0 Generates a random number
<0

12
12 = II

Initializes the random number gen
erator and returns the first random
number

0 ^12^32707
0^12^32767

Combines the magnitude of one integer (II) with the sign of a
second (12).
I = ISIGN (11,12)
Generates an integer value representing Ihe memory address where
the argument of LOC is located. The argument may be a constant

1 March 1980 8-5 FDR 30 57

8 FORTRAN FUNCTION REFERENCE

variable or array name, or a subscripted array element.

LS

LT

MAXO

M A X l

MINO

M I N I

MOD

NOT

OR

REAL

RND

I =LOC

constant
variable name
array name
array element

Note
In the 64V mode, LOC may be passed as an
argument in functions or subroutines, e.g.,
I = AND(LOC(A),LOC(B)). In this mode,
LOC returns a two-word value: the first
word represents the segment number; the
second is the word number in the segment

Shifts an integer variable left by a specified number of bits; vacated
bits are filled with zeroes.
12 = LS (II, IP)
where IP is the number of bits to be shifted to the left. If IP ^ 0, no
change is made to the integer.
Preserves a specified number of left-most bits and sets the rest to
zero (left truncation). Saves the first IP from the left and sets the
rest of the bits to zero. If IP^O, the entire integer is set to zero.
12 = LT (I1,IP)
Finds the maximum value among a variable list of integers, (see
AMAXO)
I = MAXO (11,12,. . .,In)
Finds the maximum value among a variable list of single-precision
floating-point numbers and converts it to an integer.
I = MAXl (SP1,SP2,. . .,SPn)
Finds the minimum value among a variable list of integers, (see
AMINO).
I = MINO (11,12,. . .,In)
Finds the minimum value among a variable list of single-precision
floating-point numbers and converts it to an integer (see AMIN1)
I = MINI (SP1,SP2,. . .,SPn)

Computes the remainder when one integer (II) is divided by
another (12).
I = MOD (11,12)
Performs a logical NOT operation (l's complement) on its argu
ment
I = NOT (I)
Performs a logical (inclusive) OR operation on two integers.
I = OR (11,12)
Converts the real part of a complex number to a single-precision
floating-point number.
SP = REAL (CP)
Invokes the random number generator.
SP = RND (I)
I O p e r a t i o n S P
>0 Initializes the random number gen- SP = FLOAT (I)

erator

FDR3057 8-6 1 March 1980

FORTRAN FUNCTION REFERENCE 8

RS

RT

SHFT

r

= 0 Generates a random number O.O^SP^ 1.0
<0 Initializes the random number gen- O.O^SP^l.O

erator and returns the first random
number

Shifts an integer variable right by a specified number of bits;
vacated bits are filled with zeros.
12 = RS (Il.IP)
where IP is the number of bits to be shifted to the right. If IP ^ 0, no
change is made to the integer.
Preserves a specified number of right-most bits and sets the rest to
zero (right truncation). Saves the first IP bits from the right and sets
the rest of the bits to zero. If IP^O, the entire integer is set to zero.
12 = RT (I1,IP)

Performs logical shift operations on integer variables.
1. IS = SHFT (I): In this form, the variable is unchanged and the

value is the variable itself; this form has no real use.
2. IS = SHFT (I.IP1): performs a shift operation on the variable. If

IP1>0, the shift is to the right; if IPKO, the shift is to the left; if
IP1=0, no shift occurs. This form is equivalent to the RS and LS
functions.
Operation
Right shift
Left shift
Right truncate
Left truncate

Function Equivalent SHFT function
RS (LIP) SHFT (I,IP)
LS CUP) SHFT (I,-IP)
RT (LIP) SHFT (I,IP-16,16-IP)
LT (LIP) SHFT (I,16-IP,IP-16)

3. IS = SHFT (I,IP1, IP2): Performs two shift operations, first by
IPl (setting zeroes in vacated bits), then by IP2 (setting zeroes in
vacated bits). The sign of IPl and IP2 determine the direction of
the shift while their magnitude determines the number of bits to
be shifted. As seen above, the RT and LT functions are equiva
lent to special forms of SHFT with three arguments.

~

SIGN

SIN

SNGL

SQRT

TA N H

XOR

Combines the magnitude of one single-precision floating-point
number (SPl) with the sign of a second (SP2).
SP = SIGN (SP1.SP2)
Computes the sine of a single-precision floating-point number.
SP = SIN (SP)
Converts a double-precision floating-point number to a single-
precision floating-point number.
SP = SNGL (DP)
Computes the square root of a single-precision floating-point
number.
SP = SQRT (SP)
Computes the hyperbolic tangent of a single-precision floating
point number.
SP = TANH (SP)
Performs a logical exclusive OR on a variable list of integers.
I = XOR (11,12,. . .,In)

FDR3057 8-7 1 May 1981

Error messages

COMPILER ERROR MESSAGES

ARG LIST REQUIRED

Argument list not specified in FUNCTION statement.

ARRAY NAME REQUIRED
Something other than an array name appearedin a position where only an array name is
allowed, (example: ENCODE or DECODE statement)

ARRAY/BLOCK OVERFLOW
Array/block exceeds space allocated to user.

ARRAY NESTING OVFLO
Use of arrays as subscripts in other arrays exceeds allowable nesting limit (32).

CHAR STRING SIZE
A character string was not terminated, or a string in a DATA statement was longer than
the associated variable list.

COMMON NAME ILL.
Illegal use of a name already declared in COMMON.

COMPILER OVERFLOW
Insufficient memory to compile program.

CONFLICTING DECLARN
Name(s) declared as more than one data mode.

CONSTANT REQUIRED
A name appeared where only a constant or parameter is allowed (i.e., DIMENSION
statement in a main program).

CONSTANT TOO LARGE
Constant exponent excessive for data type.

DATA MODE ERROR

Illegal mode mixing in expression, expression mode not of required type, or constant in
DATA statement is of different mode than associated name in variable list.

1 M a r c h 1 9 8 0 A - 1 F D R 3 0 5 7

A ERROR MESSAGES

DIVISION BY ZERO

Attempt has been made to divide by a zero constant.

END/REC PROHIBITED
The END=statement-number expression cannot be used in a direct access READ or
WRITE statement.

EXCESS CONSTANTS
Number of constants in DATA statement exceed variables for storing them.

EXCESS SUBSCRIPTS
Too many subscripts in EQUIVALENCE or DATA list item.

FUNCT VAL UNDEFINED
The function name was not assigned a value in a FUNCTION subprogram.

GBL MDE/IMPL CNFLCT
IMPLICIT statement and global mode specification may not be used in the same pro
gram unit.

ILL. CONSTANT EXPR.
Variables found in a PARAMETER statement

ILL. DO TERMINATION

Improper DO loop nesting, or an illegal statement terminating a DO loop.

ILL. EQUIVALENCE
EQUIVALENCE group violates EQUIVALENCE rules or specifies an impossible
equivalencing.

ILL. LOGICAL IF
A logical IF contained in a logical IF, or a DO statement contained in a logical IF.

ILL. OVER 64K COMMON
A COMMON area exceeds 64K words of user memory. Alternatively, COMMON is
offset an odd number of words and the compiler is trying to allocate words of a data ele
ment in two different segments. Re-arrange order of variables in COMMON so no
element overlaps a segment boundary.

ILL. STMT NO. REF
Reference to a specification statement number.

ILL. UNARY OP USAGE
Improper use of an operator in an expression.

ILL. USE OF ARG
SUBROUTINE or FUNCTION statement used in COMMON, EQUIVALENCE, or
DATA statement.

F D R 3 0 5 7 A - 2 1 M a r c h 1 9 8 0

ERROR MESSAGES A

r

18

ILL. USE OF CLMN. 6
Continuation line found without a continuation or statement line preceding it.

ILL. USE OF STMT
Statement illegal within the context of the program; for example, RETURN in a main
program, SUBROUTINE not the first subprogram statement, or specification state
ments out of order. If an undeclared array name is used on the left in an assignment
statement, the compiler will assume it is a statement function definition and will there
fore generate this error.

INCONSISTENT USAGE
The use of the name listed in the error message conflicts with earlier usage. This
message also will be generated at the END statement in a SUBROUTINE subprogram if
the subroutine name is used within the subprogram.

INTEGER REQUIRED
A non-integer name or constant appeared where only an integer name or constant is
allowed.

INTERNAL ERROR
Some combination of source code statements has generated an unresolvable error. The
programmer should never see this error.

MULT DEF STMT NO.
The statement number of the current line has already been defined.

NAME REQUIRED
A constant appeared where only a name is allowed.

NO DEBUG IN R MODE
The -DEBUG (or -PROD) option was included for compilation in a mode other than
64V. Compilation will proceed as if the debugging option had not been included.

NO END STMT
The last statement in the source was not an END statement.

NO PATH TO STMT
The current statement does not have a statement number and the previous statement
was an unconditional transfer of control. This will also be generated at the end of a pro
gram unit for labelled statements, if control cannot reach the statement.

NONCOMMON DATA
A BLOCK DATA subprogram initialized data not defined in COMMON or contained
executable statements.

PAREN NESTING>31

Nesting of parentheses (syntactical, array, or function reference) in expressions may
not exceed 31.

1 May 1981 A-3 FDR3057

A ERROR MESSAGES

PARENTHESIS MISSING
Incorrect parenthesis used in an implied DO loop in an I/O statement.

PROG SIZE OVERFLOW
Program too large for allocated user space.

SAVE ITEM ILLEGAL
Improper item in SAVE statement (function name, array element, etc.).

STMT NAME SPELLING
A statement name was recognized by its first four characters, but the remaining spell
ing was incorrect.

STMT NO. MISSING
A FORMAT statement appeared without a statement number.

SUBPGM/ARR NAME ILL
Illegal usage of subprogram or array name.

SUBPROGRAM NAME ILL
Illegal usage of subprogram name.

SYMBOLIC SUBSCR ILL
Illegal usage of symbolic subscript in a specification statement.

SYNTAX ERROR
General syntax error, context usually shows offending character(s).

TOO FEW SUBSCRIPTS
Number of subscripts used in an array is fewer than the numberoriginally declared in a >^
DIMENSION or mode specification statement.

UNDECLARED VARIABLE
The listed variable did not appear in a specification statement (generated when the
undeclared variable check option is enabled).

UNDEFINED STMT NO.
The listed statement number was not defined in the subprogram. The listed line number
is the line number of the last reference to the statement number.

UNRECOGNIZED STMT
The compiler could not identify the statement.

WARNING — DEBUG TURNS OFF OFr
Both the -DEBUG and -OPT (or -UNCOPT) options were selected. Compilation will
proceed as if the optimization option had not been included.

F D R 3 0 5 7 A - 4 1 M a y 1 9 8 1

ERROR MESSAGES A

WARNING — NO RETURN OR STOP
Occurs if either there is no STOP statement (main program) or RETURN statement
(subroutine) at the end of the program unit. This does not mean there is no RETURN
statement in a subroutine but that the RETURN statement immediately preceeding the
END statement is missing.

WARNING — name — NEVER GIVEN A VALUE
Occurs only if -DEBUG option included. The local variable name, used in the program,
never had a value assigned to it at any point in the program.

WARNING — name — PARAMETER IS BETTER
Occurs only if -DEBUG option included. The variable name was initialized in a DATA
statement and remains constant throughout the program. It would be more efficient to
assign a value with the PARAMETER statement.

WARNING — name — VARIABLE NOT USED
Occurs only if -DEBUG option included. The variable name was declared in a specifica
tion statement but not used in the program. Such variables are not accessible when
using the source level debugger (DBG).

1 M a y 1 9 8 1 A - 5 FDR3057

- >

rstem
and

TERMINAL
full duplex
X-ON/X-OFF disabled

EDITOR (ED)
INPUT (TTY)
LINESZ 144
MODE NCKPAR
MODE NCOLUMN
MODE NCOUNT
MODE NNUMBER
MODE NPROMPT
MODE PRALL
VERIFY

SYMBOLS
B L A N K S f t
COUNTER @
CPROMPT S
DPROMPT &
ERASE
E S C A P E A
K I L L ?
SEMICO ; end of line or command
T A B \
W I L D !

VIRTUAL LOADER (LOAD)
Memory Location: '122770 - '144000
Loading address: current *PBRK value
Library: FTNLIB FORTRAN library
MODE: D32R
Sector Zero Base Area:

Base start at location '200
Base range '600 words

COMMON: Top = '077777

SEGMENTED-LOADER (SEG)
Loading address: current TOP+1 in current procedure segment
Stack size: '6000 words
Library: PFTNLB and IFTNLB libraries

1 M a r c h 1 9 8 0 B - l F D R 3 0 5 7

B SYSTEM DEFAULTS AND CONSTANTS

EXECUTION

A-register value 0
B-register value 0
X-register value 0
Program start address '1000
Bits 4-6 of Keys:

000 16K, sector-address
001 32K, sector-address
010 64K, relative-address
011 32K, relative-address
110 64K, segmented-address

PRIMOS
ERASE
INTERRUPT CONTROL-P or BREAK
K I L L ?
Files: created with protection, owner all access rights (7), non-owner no access rights
(0).

FORTRAN COMPILER (FTN)
BINARY disk-file
ERRTTY
FP
INPUT disk-file
INTS
LISTING NO no listing file
NOBIG
NODCLVAR
NODEBUG
NOFRN
NOTRACE
NOXREF
SAVE
STDOPT
32R

18

FDR3057 3 _ 2 1 M a y 1 9 8 1

ASCII character set

The standard character set used by Prime is the ANSI, ASCII 7-bit set.

PRIME USAGE
Prime hardware and software uses standard ASCII for communications with devices. The
following points are particularly important to Prime usage.

Output Parity is normally transmitted as a zero (space) unless the device requires
otherwise, in which case software will compute transmitted parity. Some controllers
(e.g., MLC) may have hardware to assist in parity generations.
Input Parity is ignored by hardware and by standard software. Input drivers are
responsible for making the parity bit suit the host software requirements. Some con
trollers (e.g., MLC) may assist in parity error detection.
The Prime internal standard for the parity bit is one, i.e., '200 is added to the octal
value.

KEYBOARD INPUT

Non-printing characters may be entered into text with the logical escape character and the
octal value. The character is interpreted by output devices according to their hardware.
Example: Typing A207 will enter one character into the text.

CTRL-P ('220) is interpreted as a .BREAK.
.CR. ('215) is interpreted as a newline (.NL.)

('242) is interpreted as a character erase
? ('277) is interpreted as l ine ki l l
\ ('334) is interpreted as a logical lab (Editor)

1 M a r c h 1 9 8 0 C - l F D R 3 0 5 7

C ASCII CHARACTER SET

Table C-l. ASCII Character Set (Non-Printing)

Comments/Prime Usage
Octal
Value

ASCII
Char

200 NULL
201 SOH
202 STX
203 ETX
204 EOT
205 ENQ
206 ACK
207 BEL
210 BS
211 HT
212 LF
213 VT
214 FF
215 CR
216 SO
217 SI
220 DLE
221 DC1
222 DC2
223 DCS
224 DC4
225 NAK
226 SYN
227 ETB
230 CAN
231 EM
232 SUB
233 ESC
234 FS
235 GS
236 RS
237 US

Null character — filler
Start of header (communications)
Start of text (communications)
End of text (communications)
End of transmission (communications)
End of I.D.(communications)
Acknowledge affirmative (communications)
Audible alarm (bell)
Back space on position (carriage control)
Physical horizontal tab
Line feed; ignored as terminal input
Physical vertical lab (carriage control)
Form feed (carriage control)
Carriage return (carriage control) (1)
RRS-red ribbon shift
BRS-black ribbon shift
RCP-relative copy (2)
RHT-relative horizontal tab (3)
HLF-half line feed forward (carriage control)
RVT-relative vertical tab (4)
HLT-half line feed reverse (carriage control)
Negative acknowledgement (communications;
Synchronocity (communications)
End of transmission block (communications)
Cancel
End of Medium
Substitute
Escape
File separator
Group separator
Record separator
Unit separator

Control
Char

"@
AA
AB
AC
AD
AE
AF
AG
AH
AI
Al
AK
AL
AM
AN
Ao
AP
AQ
AR
AS
AT
AU
Av
Aw
Ax
AY
Az
A[
A \

Notes
1. Interpreted as .NL. at the terminal.
2. .BREAK, at terminal. Relative copy in file; next byte specifies number of

bytes to copy from corresponding position of preceding line.
3. Next byte specifies number of spaces to insert
4. Next byte specifies number of lines lo insert.

Conforms to ANSI X3.4-1968
The parity bit ('200) has been added for Prime-usage. Non-printing characters (Ac) can be
entered at most terminals by typing the (control) key and the character key simultaneously.

FDR3057 C-2 1 March 1980

ASCII CHARACTER SET C

Table C-2. ASCII Character Set (Printing)
Octal ASCI I Octal ASCI I Octa l ASCI I
Value Charac t e r V a l u e Character Value Character

240 .SP. (I 300 340 ' (9)

241 301 341
242 " ffl 302 342
243 # (3) 303 343
244 304 344
245 305 345
246 306 346
247 ' (4J 307 347
250 310 350
251 311 351
252 312 352
253 313 353
254 . (5) 314 354
255 315 355
256 316 356
257 317 357
260 320 360
261 321 361
262 322 362
263 323 363
264 324 364
265 325 365 LI
266 326 366
267 327 367
270 330 370
271 331 371
272 332 372
273 333 373
274 334 374
275 335 375
276 *> 336 A (7) . 376 - (U)j
277 ? [6] 337 —m 377 DEL (11)

1. Space forward one position
2. Terminal usage — erase previous character
3. X in British use
4. Apostrophe/single quote
5. Comma
6. Terminal usage — kill line
7. 1963 standard f: terminal use — logical escape
8. 1963 standard -
9. Grave

10. 1963 standard ESC
11. Rubout — ignored

The parity bit

Conforms to ANSI X3.4-1968
1963 variances are noted

'200) has been added for Prime usage.

i March 1980 C-3 FDR3057

Prime memory formats
of FORTRAN data types

INTRODUCTION
Prime machines use a 16-bit memory word which is addressable by word. Prime's FORTRAN
data types depart slightly from the ANSI standard which states that LOGICAL, INTEGER, and
REAL items occupy one storage unit each. If a storage unit is 32 bits (4 bytes=2 words), then the
requirements of ANSI are met except for the LOGICAL type which is only 16 bits. Below is a
representation of the sizes of data entities, for the purposes of EQUIVALENCE statements,
used by Prime. Detailed descriptions of each type are presented separately.

1 16

16

s

LOGICAL

16 32

s

\ 1 , 6 2 4 32

S MANTISSA EXPONENT REAL(REALM)

64

5 MANTISSA EXPONENT

16 2 4 3 2 48 5 6 6 4

s MANTISSA (REAL) EXPONENT
(REAL) MANTISSA (IMAGINARY) EXPONENT

(IMAGINARY)

DOUBLE PRECISIOIN
(REAL'8!

Note
There is no requirement for single, double, or quadruple word
alignment in these entities.

I March 1980 D- l FDR3057

D PRIME MEMORY FORMATS OF FORTRAN DATA TYPES

DATA TYPES
LOGICAL 16 bits. Bits 1-15=0, Bit 16=0=.FALSE., 1=.TRUE.
These values are equivalent to INTEGER*2 values of 0 and 1 respectively. Any other values are
illegal for LOGICAL variables.
INTEGER*2 16 bits. Bit l = sign bit. INTEGER numbers are in 2's complement representation
with a value range of -32768 to 32767. These numbers in octal are '100000 and '077777 respec
tively. Note that -0=0, and -(-32768)=-32768.
Integer arithmetic is always exact. Integer division truncates, rather than rounds.
INTEGER*4 32 bits. Bit l=sign bit. Integer numbers are in 2's complement representation with a
value range of -2147483648 to 2147483647. These numbers, in octal (word 1, word 2) are
('100000, '000000) and ('077777, '177777) respectively. Note that -0=0 and
-(-2147483648)=-2147483648.
Integer arithmetic is always exact. Integer division truncates, rather than rounds.

CAUTION
Explicit use of DBLE (FLOAT(I*4)) can cause the loss of the
low-order 8 bits of precision. Mixed mode arithmetic, however,
will not lose precision.

REALM 32 bits. Bit l=sign bit. Bits 2-24=mantissa. Bits 25-32=exponent. The mantissa and sign
are treated as a 2's complement number and the exponent is an unsigned, excess 128, binary
exponent. In general, any floating point number is represented as:

N=M * 2** (E-128)
where

-KM<-l/2 or 1/2^M<1
0^E^255

Zero is represented as M=0, E=0.
The value range, in octal (wordl, word2) is:

('100000, '000377) [See Note] to ['077777, '177777)
corresponding to -1*2** (127) and (l-e)*2** (127).
The values closest lo zero, in octal are:

('137777, '177400) and ('040000, '000000) [See Note]
corresponding to (-l/2+e)*2**-128 and 1/2*2** -128
Normalization ensures that bits 1 and 2 are different and is achieved by shifting left 1 bit at a
time. Hence, the effective precision is belween 22 and 23 bits.

Note
These numbers will cause exponent overflow if negated due to
the asymmetry of 2's complement notation.

DOUBLE PRECISION 64 bits. Bil 1 = sign bit. Bits 2-48 = mantissa. Bits 49-64 = exponent. The
mantissa and sign are treated as a 2's complement number and the exponent is a signed, excess
128, binary exponent. In general, any double precision floating point number is represented as:

N = M * 2 (E-128)
where

-1^M< - 1/2 or 1/2^M<1
-32768^E^32767.

F D H . ' (0 5 7 D - 2 1 M a r c h 1 9 8 0

PRIME MEMORY FORMATS OF FORTRAN DATA TYPES D

-

Zero is represented as M = 0, E = 0.
The value range, in octal (wordl, word2, word3, word4) is:

('100000, '000000, '000000, '077777) [See Note] to
['077777, '177777, '177777, '077777)

corresponding to -1*2**32639 and (1-e)*2**32639
The values closest to zero, in octal, are:

('137777, '177777, '177777, '100000) and
('040000, '000000, '000000, '100000) [See Note]

corresponding to (-l/2+e)*2**-32896 and l/2*2**-32896
Normalization ensures that bits 1 and 2 are different and is achieved by shifting left 1 bit at a
time. Hence, the effective precision is between 46 and 47 bits.

Note
These numbers will cause exponent overflows if negated due to
the asymmetry of 2's complement notation.

COMPLEX 64 bits. A complex number is defined as two REALM entities (see above) represent
ing the real and imaginary parts.
CHARACTERS Prime uses ASCII as its standard internal and external character code. It is the
8-bit, marking variety (parity bit always on). Thus, Prime's code set is effectively a 128-char-
acter code set. (ASCII spacing representation, parity bit always off, can be entered into the
system, but most system software will fail to recognize the characters as their terminal printing
equivalent.)
Characters packed into numeric items will always be negative numbers if accessed numeri
cally. Also, if the data item is not completely filled (e.g., A2 format into a REALM item), the item
will be right padded with blanks (ASCII '240).
The positions of the exponents for REAL and DOUBLE PRECISION items precludes sorting
character data as REAL items, but is quite legitimate in integer items. However, EQUAL
comparisons in REAL items are valid.

1 M a r c h 1 9 8 0 D - 3 F D R 3 0 5 7

MISC.

r

(in B format) 6-24
S (FORTRAN address constants)

5-6
S (in B format) 6-24
SINSERT statement 6-10
SINSERT. nesting not allowed

6-10
SX version, subroutines 8-1
. (singles quote in IBM format

direct access READ) 6-17
' (single quote representation in

ASCII string) 5-4
* (in B format) 6-24
+ (in B format) 6-24
, (in B format) 6-24
, (in FORMAT statement) 6-20
- (in B formal) 6-24
-32R (compiler option) 2-9
-64R (compiler option) 2-9
-64V (compiler option) 2-9
-BIG (compiler option) 2-2
-BINARY (compiler option) 2-2
-DCLVAR (compiler option) 2-3
-DEBASE (compiler option) 2-3
-DEBUG (compiler option) 2-3
-DYNM (compiler option) 2-3
-DYNM option, compiler, use

of 4-6
-ERRLIST (compiler option) 2-4
-ERRTTY (compiler option) 2-4
-EXPLIST (compiler option) 2-4
-FP (compiler option) 2-4
-INPUT (compiler option) 2-4
-INTL (compiler option) 2-4
-INTS (compiler option) 2-5
-LIST (compiler option) 2-5
-LISTING (compiler option) 2-5
-NOBIG (compiler option) 2-5
-NODCLVAR (compiler option)

2-5
-NODEBUG (compiler option)

2-5
-NOERRTTY (compiler option)

2-5
-NOFP (compiler option) 2-5
-NOTRACE (compiler option)

2-6
-NOXREF (compiler option) 2-6
-OPT (compiler option) 2-6
-PBECB (compiler option) 2-6
-PROD (compiler option) 2-6
-SAVE (compiler option) 2-6
-SOURCE (compiler option.) 2-6
-STDOPT (compiler option) 2-6
-TRACE (compiler option) 2-6
-UNCOPT (compiler option) 2-6

-XREFL (compiler option) 2-7
-XREFS (compiler option) 2-7
• (in B format) 6-24
•AND. truth table 5-6
•FALSE. 5-4
•NOT. truth table 5-6
OR. truth table 5-6
•TRUE. 5-4
/ (in FORMAT statement) 6-20
// (blank COMMON) 6-6
32R (compiler option) 2-9
64R (compiler option) 2-9
64V (compiler option) 2-9
64V-mode COMMON, optimiza

tion 4-4
: (FORTRAN octal numbers) 5-3

ATTDEV subroutine 6-15
Audience l-l

B

A
A input format 6-23
A output format 6-22
A register 2-9
A register defaults 2-9
Address constants 5-6
Address, call by 6-3
AND truth table 5-6
ANSI standard data storage D-l
Application library subroutines

7-3
Area TRACE statement 6-10
Arguments:

function 7-2
subroutine 7-3

Arithmetic:
IF statement 6-12
mixed mode 6-10
operators 5-6
vs. logical IF 4-6

Arrays: 5-5
dummy argument, over 64K

word COMMON 6-6
in over 64K word

COMMON 6-6
segment-spanning 2-2

ASCII:
character set C-l
character strings 5-4
characters, non-printing C-2
characters, printing C-3
data storage format D-3
keyboard input C-l
parity C-l
Prime usage C-l

Assembly language, interface
to 1-8

ASSIGN statemenl 6-11
Assigned GO TO statement 6-12
Assignment statements 6-10
Assignment statements, data

mode rules, table 6-12

B format, details 6-22
B output format 6-22
B register 2-9
B register defaults 2-9
BACKSPACE statement 6-26
Base areas, conversation 2-3
Batch environment 1-4
BIG (compiler option) 2-2
Binary file, compiler 2-2
Binary file, compiler (unit 3)

2-12
Binary files, concatenating 2-13
Binary READ statement 6-17
Binary WRITE stalement 6-19
BINARY:

(compiler option) 2-2
[PRIMOS command) 2-13

Bit-device correspondence,
compiler 2-12

Bit-mnemonic correspondence, A
register 2-10

Bit-mnemonic correspondence, B
register 2-10

Blank COMMON 6-5
BLOCK DATA statement 6-3
Block data subprogram 6-3
BLOCKDATA statement 6-3

Call by address 6-3
Call by value 6-3
CALL EXIT 1-4
CALL statemenl 6-27. 6-9
Change 1/0 unit physical device

correspondence 6-15
Changing record size 6-15
CHARACTER data storage

format D-3
Character set, ASCII C-l
Character sel, legal 5-1
Character siring, input, list

directed 6-18
Circular reasoning see proof by

assumption
CLOSE (PRIMOS command)

2-13
CLOSE ALL 2-13
Closing files 2-13
COBOL, interface 1-8
Code, relative address 2-9
Code, segmented address 2-9
Codes, concordance 2-8
Coding statements 6-19

March 1980 X - l FDR3057

X INDEX

Coding strategy 3-1
Column 6 for continuation 5-2
Columns 73-80 5-2
Comment lines 5-2
Comments, use of 3-2
COMMON block FSIOBF 6-15
COMMON block LIST 6-6
COMMON blocks 6-5
COMMON blocks over 64K

words 0-6
COMMON statement 6-5
COMO, use with TRACE 6-10
Compatibility, languages 1-1
Compilation statements 6-9
Compilation, end of. message

2-1
Compilation, V-mode vs.

R-mode 4-4

Compiler error message 2-2
Compiler option:

-32R 2-9
-64R 2-9
-64V 2-9
-BIG 2-2
-BINARY 2-2
-DC VAR 2-3
-DEBASE 2-3
-DEBUG 2-3
- D Y N M 2 - 3
-ERRLIST 2-4
-ERRTTY 2-4
-EXPLIST 2-4
-FP 2-4
-INPUT 2-4
-INTL 2-4
-INTL 2-4
-INTS 2-5
-LIST 2-5
-LISTING 2-5
-NOBIG 2 -5
-NODCLVAR 2-5
-NODEBUG 2-5
-NOERRTTY 2 -5
-NOFP 2-5
-NOTRACE 2-6
-NOXREF 2-6
-OPT 2-6
-PBECB 2-6
-PROD 2-6
-SAVE 2-6
-SOURCE 2-6
-STDOPT 2 -6
-TRACE 2-6
-UNCOPT 2 -6
-XREFL 2-7
-XREFS 2-7

Compi ler :
-DCLVAR usage 3-2
-DYNM option, use of 4-6
binary file 2-2
binary file (unit 3) 2-12
descript ion 1-6
devices, defaull 2-12

error messages A-1
error messages, print al

terminal 2-4
error messages, suppress

pr int ing 2-5
file specifications, table 2-3
file unit usage 2-12
FORTRAN, defaults B-2
global trace 3-3
input file 2-4
invoking 2-1
listing file 2-5
listing file (unit 2) 2-12
listing, default 2-5
listing, enable 2-5
listing, expanded 2-4
listing, full 2-5
object file 2-2
object file (unit 3) 2-12
parameters 2-2
source file 2-6
source file (unit 1) 2-12
syntax 2-1
syntax checking 3-2
warning message 2-2

Compil ing 2-1
Compiling from peripheral

devices 2-12

Compiling lo peripheral
devices 2-12

Complete cross reference 2-7
COMPLEX data storage format

D-3
COMPLEX mode 6-5
Complex numbers 5-4
Composition, program 5-7
Computed GO TO statement

6-12

Concalenaling binary Files 2-13
Concatenating listing files 2-13
Concordance see also cross

reference
Concordance address, over 64K

word COMMON 6-6
Concordance codes 2-8
Concordance, compiler, enable

2-7
CONIOC 6-15
Conserve loader base areas 2-3
Constants: 5-2

address 5-6
range 5-2
system B-1

Continuation lines 5-2
CONTINUE statement 6-11
Control flow, conversion 1-4
Control flow, program.

monitoring 3-2
Control lines 5-2
Co n I ro I s I a t e me n I s 6-1 1
Conversion:

control flow 1-4

funct ions 1-4
Input/output 1-4
program 1-2
source language 1-2
subrout ines 1-4

CR (in B formal) 6-24
Cross reference:

see also concordance
codes 2-8
compiler, enable
complete; 2-7
example 2-7
explanat ion 2-7
ful l 2-7
par t ia l 2-7
shorl 2-7
suppression 2-6

2-7

D
D input formal 6-23
D output formal 6-22
DATA statement 6-9
Data:

definition statement 6-9
mode convention, FORTRAN,

overr id ing 6-4
mode of function 6-3
mode rules for assignment

statements, table 6-12
mode typing, parameter 6-5
modes 0-5
storage format, ASCII D-3
storage format, CHARACTER

D-3
storage format. COMPLEX

D-3
storage format, DOUBLE

PRECISION D-2
storage format, INTEGER*2

D-2
storage format. INTEGER*4

D-2
storage formal, LOGICAL D-2
storage format, REAL*4 D-2
storage, ANSI standard D-l
types 6-5
types, FORTRAN, memory

fo rmats D- l
Database management system,

interface to 1-7
DBG (debugger) 3-1
DCLVAR (compiler option) 2-3
DEBASE (compiler option) 2-3
DEBUG (compiler option) 2-3

Debugger code generation 2-3
Debugger code generation.

suppress 2-5
Debugger, source level 3-1
Debugging 3-1
DECODE, formatted, stalement

6-20
DECODE, list directed, statement

6-20

FDR3057 X - 2 1 March 1980

INDEX X

Default:
compiler devices 2-12
compiler listing 2-5
object code 2-9
record size 0-15

Defaults:
A register 2-9
B register 2-9
E D B - l
editor B-l
execution B-2
FORTRAN compiler B-2
FTN B-2
LOAD B-l
Loader B-l
PRIMOS B-2
SEG loader B-1
segmented loader B-1
system B-l

Delimiters, format 6-20
Delimiters, list directed 6-17
Descriptor repetition 6-20
Development, program 1-3
Development control statements

6-26
Device-bit correspondence,

compiler 2-12
Devices, compiler, default 2-12
DIMENSION statement 6-8
Dimensioning, not allowed in

SAVE statement 6-8
Direct access 6-14
Direct access and ATTDEV

subroutine 6-14
Direct access and the Editor

6-14
Direct access READ statements

6-17
Direct access WRITE statements

6-19
Direct access, IBM compatibility

6-14
Direct access, use of 6-14
DO:

loop index 6-12
loop optimization 2-6. 4 -I
loop optimization, suppress
2-6
loop, one-trip 6-12
loops, implied 6-19
loops, nesting 6-11
statement 6-11

Documents, related 1-2
DOUBLE PRECISION see also

REAL* 8
DOUBLE PRECISION data

storage format D-2
DOUBLE PRECISION mode 6-5
Double precision numbers 5-3
Dummy argument arrays, over

WK WQtfJ COMMON 6-6

Dynamic allocation of local
storage 2-3

DYNM (compiler option) 2-3
DYNM option, compiler, use of

4-6

E
E input format 6-23
E output format 6-21
ECBs, load into procedure

frame 2-6
ED. defaults B-l
Editor defaults B-l
EDitor, description 1-8
Editor, use of on direct access

files 6-14
Enable compiler concordances

2-7
Enable compiler cross refer

ences 2-7
Enable compiler listings 2-5
Enable flagging of undeclared

variables 2-3
Enable global trace 2-6
ENCODE statement 6-20
End of compilation message 2-1
END statemenl 6-12
EN1> 6-16
ENDFILE statement 6-26
Ending main program 1-4
Environment:

batch 1-4
interactive 1-4
phantom user 1-4
program, list 1-4

EQUIVALENCE statement 6-8
ERR= 6-16
ERRLIST (compiler option) 2-4
Error:

message, compiler 2-2
messages A-1
messages, compiler A-1
messages, compiler, print

only 2-4
messages, compiler, print at

terminal 2-4
ERRTTY (compiler option) 2-4
Execution defaults B-2
Exit, normal 6-11
Expanded compiler listing 2-4
EXPLIST (compiler option) 2-4
Extended intrinsic functions 7-1
Extended range, optimization

2-6
Extensions 1-2
External procedure statements

6-9
EXTERNAL sUUemcnt B-9

F input format 6-23
F output format 6-21
FSIOBF COMMON block 6-15
FALSE 5-4
Field descriptor, formal 6-20
File specifications, compiler,

table 2-3
File system summary 1-5
File unit usage, compiler 2-12
Floating point skip operations

generate 2-4
Floating point skip operations,

suppress 2-5
Format delimiters 6-20
Format field descriptor 6-20
Formal lines, rescanning 6-21
FORMAT statement 6-20
Formal, line 5-1
FORMAT, use of parameters not

allowed 6-5
Formats as variables 6-22
Formats in input statements.

table 6-23
Formats in output statements.

table 6-21
Formats, memory. FORTRAN

data types D-l
Formatted DECODE statement

6-20
Formatted printer control 6-26
Formatted READ stalement 6-16
Formatted WRITE statement

6-19
Forms management system, inter

face to 1-7
FORTRAN compiler defaults

B-2
FORTRAN data mode convention.

overriding 6-4
FORTRAN data types, memory

formats D-l
FORTRAN extensions. Prime

1-2
FORTRAN function library 8-1
FORTRAN function reference

8-1
FORTRAN functions 7-1
FORTRAN functions, list 8-2
FORTRAN language elements

5-1
FORTRAN language tutorial

books l-l
FORTRAN library functions 7-1
FORTRAN library. V-mode 8-1
FORTRAN math subroutines

7-3

1 March 1980
X-3

F1)R"<)57

X INDEX

FORTRAN mathematical func
tions table 1-5

FORTRAN statements 6-1
FORTRAN under PRIMOS 1-2
FORTRAN unit number, physical

devices, table 6-16
FORTRAN, Prime's, overview

1-1
FP (compiler option) 2-4
FTN (PRIMOS command) 2-1
FTN. defaults B-2
FTN. FORTRAN compiler 2-1
FTNLIB 8-1
Full compiler listing 2-5
Full cross reference 2-7
FULL LIST statement 6-9
Function, structure of 7-1
Function:
FUNCTION:

arguments 7-2
calls 6-26
calls, optimization 4-4
mode 6-3
mode typing 7-1
reference, FORTRAN 8-1
rules 7-2
statement 6-3, 7-1
subprograms, user-defined 7-1

Functions:
conversion 1-4
extended intrinsic 7-1
FORTRAN 7-1
FORTRAN library 7-1
FORTRAN, list 8-2
statement 7-1
trigonometric 8-1

G inpul format 6-23
G output format 6-21
Generalized subscripts 5-5
Generate debugger code 2-3
Generate floating point skip

operations 2-4
Generate productions code; 2-6
Global mode specification 6-5
Global SAVE 6-9
Global trace, enable 2-6
Global trace, suppress 2-6
Global/IMPLICIT conflict 6-5
GO TO. assigned, statement

6-12
GO TO, computer, stalement

6-12
GO TO, unconditional, state-

men/ 6-12

Header statements for sub
programs 6-3

I lollerith constants 5-4

I

H
H output format 6-22

I inpul formal 6-23
I output format 6-22
I/O unit physical device

correspondence, change 6-15
IBM compatibility, direct access

files 6-14
IF statements, optimization 4-4
IF. arithmetic, statemenl 6-12
IF, logical vs. arithmetic 4-6
IF, logical, statement 6-12
IFTNLB 8-1
Implementation, over 64K word

COMMON 6-7
Implemented statements, list 6-1
IMPLICIT and intrinsic functions

8-1
IMPLICIT statement 6-4
IMPLICIT/globai conflict 6-5
Implied DO loops 6-19
In-line comments, use of 3-2
Indention, use of 3-2
Index, DO loop 6-12
INPUT (compiler option) 2-4
Input/output optimization 4-4
Input/output, for conversion 1-4
Inpul:

file, compiler 2-4
scale factors 6-25
specifications, compiler 2-4
Specifications, compiler 2-10
statements 6-14
statements, formats in, table

6-23
INSERT see SINSERT
INTEGER see also INTEGER*2,

INTEGERM
INTEGER mode 6-5
INTEGER*2 see also INTEGER.

INTEGERM
1NTEGER*2 data storage formal

D-2
INTEGER*2 default 2-5
INTEGER*2 mode 6-5
INTEGERM see also INTEGER.

INTEGERM
INTEGERM data storage format

D-2
INTEGERM default 2-4
INTEGERM mode 6-5
Integer:

division optimization 4-6
ramlom number generator 8-5
sign extension 8-1
Iruneat ion 8-2

Integers: 5-3
in subroutine calls 2-4
long 5-3
short 5-3

Interactive environment 1-4
Interface to assembly language

1-8
Interface to COBOL 1-8
Interface to database manage

ment system 1-7
Interface to Forms management

system 1-7
Interface to PL/I subset G 1-8
Interface lo PMA 1-8
INTL (compiler option) 2-4
Intrinsic functions and

IMPLICIT 8-1
Intrinsic functions, extended 7-1
INTS (compiler option) 2-5
Item TRACE statement 6-10

Keyboard input. ASCII
characters C-1

L input format 6-23
I. output formal 6-22
Language compatibility 1-1
Language elements, FORTRAN

5-1
Language interface 1-8
Language, source, conversion

1-2
Legal character set 5-1
Libraries, descriptions 1-6
Library:

calls optimization 4-5
FORTRAN function 8-1
functions, FORTRAN 7-1

Line formal 5-1
LIST:

(COMMON block) 6-6
(compiler option) 2-5

List:
directed character siring
input 6-18
directed DECODE statement

6-20
directed delimiters 6-17
directed numerical input 6-18
directed READ statements

6-17
FORTRAN functions 8-2
statement 6-9

LISTING:
(eompihr opium] 2-5
(PRIMOS command) 2-)2

FDR30S7
X-4

1 March 1980

INDEX X

Listing:
compiler, default 2-5
compiler, enable 2-7
compiler, expanded 2-4
file, compiler 2-5
file, compiler (unit 2) 2-12
file, spooling 2-5
files, concatenating 2-13
full, compiler 2-5

LOAD, defaults B-1
Load:

ECBs into procedure frames
2-6

sequence, optimization 4-3
Loader:

conservation of base areas 2-3
description 1-6
SEG. defaults B-l
segmented, defaults B-1

Local storage, dynamic
allocation 2-3

Local storage, static allocation
2-6

LOGICAL mode 6-5
LOGICAL, data storage format

D-2
Logical:

constants 5-4
functions, mixed integers in

8-2
IF statement 6-12
operators 5-6
shift operator 8-7
vs. Arithmetic IF 4-6

Long and short integers, mixing
8-1

Long integers 5-3

^ MMain program, ending 1-4
Math subroutines. FORTRAN

7-3
Mathematical functions,

FORTRAN, table 1-5
Matrix subroutines, table 1-6
Memory allocation, optimization

4-3
Memory formats, FORTRAN data

types D-l
Message:

end of compilation 2-1
error A-1
error, compiler 2-2, A-2
warning, compiler 2-2

MIDAS see also Multiple Index
Direct Access System

MIDAS, descriptor 1-8
Mixed integers in logical

functions 8-2
Mixed mode arithmetic 6-10
Mixing long and short integers

8-1

Mnemonic-bit correspondence. A
register 2-11

Mnemonic-bit correspondence. B
register 2-1 1

Mode:
date 6-5
data see data type
mixing rules 6-11
of function 6-11
specification statement 6-4
specifications, global 6-5
typing, function 7-1

Modular program structure 3-1
Monitoring program control flow

3-2
Multi-dimensioned arrays.

optimization 4-3
Multiple Index Direct Access

System see also MIDAS

N
Nesting DO loops 6-1 1
Nesting, not allowed in SINSERT

files 6-10
NO LIST stalement 6-9
NOBIG (compiler option) 2-5
NODCLVAR (compiler option)

2-5
NODEBUG (compiler option)

2-5
NOERRTTY (compiler option)

2-5
NOFP (compiler option) 2-5
Non-printing ASCII characters

C-2
Normal exit 6-11
NOT truth table 5-6
NOTRACE (compiler option) 2-6
NOXREF (compiler option) 2-6
Numerical input, list directed

6-18

o
Object:

code generation 2-9
code, default 2-9
file, compiler 2-2
file, compiler (unit 3) 2-12

One-trip DO loop 6-12
Operands 5-2
Operator priority 5-7
Operators 5-6
Operators, arithmetic 5-6
Operators, logical 5-6
Operators, relational 5-7
OPT (compiler option) 2-6
Optimization 4-1
Optimization of DO loops,

suppress 2-6

Optimization:
64V-mode COMMON 4-4
DO loops 2-6. 4-1
functions calls 4-4
IF statements 4-4, 4-6
input/output 4-4
integer division 4-6
library calls 4-5
load sequence 4-3
memory allocation 4-3
multi-dimensioned arrays 4-3
parameter statements 4-5
statement functions and

subroutines 4-5
statement number 4-2
statemenl sequence 4-5
unconditional 2-6

Options, compiler see also
parameters, compiler

OR truth table 5-6
Order of statements in a

program 5-8
Organization 1-1
Output input optimization 4-4
Output:

scale factors 6-25
specifications, compiler 2-2,

2-10
statements 0-14
statements, formats in. table

6-21
Over 64K word COMMON

blocks 6-6
Over 64K word COMMON.

arrays 6-6
Over 64K word COMMON.

concordance address 6-6
Over 64K word COMMON.

dummy argument array 6-6
Over 64K word COMMON.

implementation 6-7
Over 64K word COMMON, pro

gramming considerations 6-7
Over 64K word COMMON.

restrictions (\-7
Overriding FORTRAN data mode

convention 6-4
Overview of Prime's FORTRAN

1-1

PARAMETER statement 6-5
Parameter: . 5-4

compiler see also options,
compiler

compiler 2-2
data mode typing 6-5
not allowed in FORMAT

statemenl 6-5
statements optimization 4-5
usage 6-5

Parity. ASCII C-l

1 March 1981) X-5 FDR3057

X INDEX

Partial cross reference 2-7
PAUSE statement 6-13
PAUSE, recovering from 6-13
PBECB (compiler option) 2-6

Peripheral devices with compiler
2-12

Petitio principii see circular
reasoning

PFTNLB 8-1
Phantom user environment 1-4

Physical device FORTRAN unit
numbers, table 6-16

Physical device I/O unit
correspondence, change 6-15

PL/I subset G, interface lo 1-8
PMA see also Prime Macro

Assembly Language
PMA, interface lo I-8
Prime extension to FORTRAN

I-2
Prime Macro Assembly Language

see also PMA
PRIMOS defaults B-2
PRIMOS command:

BINARY 2-13
CLOSE 2-13
FTN 2-1
LISTING 2-12

PRIMOS. FORTRAN under 1-2
Print compiler error messages at

terminal 2-4
Print only error messages 2-4
PRINT statement 6-15
Printer control, formatted 6-26
Printing ASCII characters C-3
Priority of operators 5-7
Procedure frames, load ECBs

into 2-6
PROD (compiler option) 2-6
Production code, generate 2-6

Program
composi t ions 5-7
control flow, monitoring 3-2
conversion 1-2
development 1-3
environments, list 1-4
order of statements in 5-8
structure, modular 3-1

Programming considerations,
over 64K word COMMON 6-7

Proof by assumption see pelitio
p r inc ip i i

R
R-mode vs. V-mode compilation

4-4
Random number generator.

integer 8-5
Random number generator, real

8-6

Range of constants 5-2
READ:

binary, statemenl 6-17
direct access, statements 6-17
formatted, stalement 0-16
list directed, statement 6-17
statements 6-16

RIAL see also REALM
REAL mode 6-5
Real numbers 5-3
Real random number generator

8-6

REALM see also REAL
REALM dala Storage format D-2
REALM mode 6-5
REAI.*8 see also DOUBLE

PRECISION
REAI/8 mode 6-5
REC= 6-17.6-19
Record:

size over 128 words 6-15
size, changing 6-15
size, default 6-15

Recovering from PAUSE 6-13
Recursive subroutines 6-9
Related documents 1-2

Relational operators 5-7
Relative address code 2-9

Repetition, field descriptor 6-20
Representation, ASCII character

strings 5-4
Representation, complex numbers

5-4

Representation, double precision
numbers 5-3

Rescanning format lines 6-2 1
Resources, system, list 1-5
Restrictions on over 64K word

C O M M O N 6 - 7
RETURN statement 6-14
REWIND statement 6-26
Rules for functions 7-2
Rules for subroutines 7-3
Rules for variables 5-4
Rules, mode mixing 6-1 1
Run-time statements 6-9

SAVE (compiler option) 2-6
SAVE statemenl 6-8
SAVE statement, dimensioning

not allowed in 6-8
SAVE, global 6-9
Scale factors 6-25
SEG loader defaults B-l
SEG utility, description 1-6

Segment-spanning arrays 2-2
Segmented address code 2-9
Segmented loader defaults B-l

Sequence numbers 5-2
Selling A register 2-9
Setting B register 2-9
Short and long integers, mixing

8-1
Short call subroutines 8-1
Short cross reference 2-7
Shorl integers 5-3

Sign extension, integer 8-1
Skip operations, floating point.

generate 2-4
Skip operations, floating point,

suppress 2-5
SOURCE (compiler option) 2-6
Source:

file, compiler 2-6
file, compiler (unit 1) 2-12
language conversion 1-2
level dubugger 3-1

Spacing, using of 3-2
Specification statements 6-4
Spooling the listing file 2-5
Statement:

data definition 6-9
funct ions 7-2
functions and subroutine

opt imizat ion 4-5
lines 5-1
number, optimization 4-2
sequence optimization 4-5

Statements: 6-1
assignment 0-10
coding 6-19
compi la t ion 0-9
control 6-11
device control 6-26
External procedure 6-9
grouped, list 6-2
header, for subprograms 6-3
implemented, list 6-1
inpul 6-14
order of in programs 5-8
Output 6-14
READ 6-16
run- l ime 6-9
specification 6-4
storage 6-5
WRITE 6-18

Static allocation of local storage
2-6

STDOPT (compiler option) 2-6
STOP stalement 6-14

Storage formal:
data, ASCII D-3
data. CHARACTER D-3
data. COMPLEX D-3
dala. DOUBLE PRECISION

D-2
data. INTEGERS D-2
data, INTEGER*2 D-2
data, LOGICAL D-2
data. REALM D-2

Storage statements 6-5

FDH305 X-6 1 March 1980

INDEX X

r

Storage. ANSI standard D-1
Storage, local, dynamic,

allocation 2-3
Storage, local, static allocation

2-6
Strategy, coding 3-1
Structure of function sub

program 7-1
Structure of subroutine sub

programs 7-3
Structure, program, modular 3-1
Subprogram, block dala 6-3
Subprograms, functions, user-

defined 7-1
Subprograms, header statements

for 6-3
SUBROUTINE statemenl 6-3,

7-3
Subrout ine:

arguments 7-3
ATTDEV 6-15
calls 6-27
calls, integers in 2-4
rules 7-3
subprogram, structure of 7-3

Subroutines:
SX versions 8-1, 7-2
application library 7-3
conversion 1-4
FORTRAN math 7-3
matrix, table 7-3
PRIMOS system 7-3
recursive 6-9
short call 8-1
user-defined 7-3

Subscripts:
generalized 5-5
maximum number of 5-5

Suppress:
cross reference 2-6
debugger code generation 2-5
DO loop optimization 2-6
flagging of undeclared

variables 2-5
lloaring point skip operations
2-5
ftlobals trace 2-6
printing of compiler error

messages 2-5
Syntax:

checking, compiler 3-2
compiler 2-1

System:
constants B-l
defaults B-l
resources 1-5

T input formal 6-23
T output formal 6-22
Terminal defaul Is B-

Trace:
global, compiler 3-3
global, enable 2-6
global, suppress 2-6

TRACE:
(compiler option) 2-6
area, statemenl fi- 10
item, statements 6-10
statements, use of 3-2
use with COMO 0-10

Trigonometric functions 8-1
TRUE 5-4
Truncation, integer 8-2
Truth tables 5-6
Tutorial books. FORTRAN

language l-l
Type, dala see also data mode
Types, dala 6-5

U
Unconditional GO TO statement

6-12
Unconditional optimization 2-6
UNCOPT (compiler option) 2-6
Undeclared variables, enable

flagging 2-3
Undeclared variables, suppress

flagging 2-5
User-defined function subpro

grams 7-1
User-defined subroutines 7-3

V
V-mode FORTRAN library 8-1
V-mode vs. R-mode compilation

4-4
Value, call by 6-3
Variable rules 5-4
Variables 5-4
Variables, formats as 6-22

w
WARNINGS 2-2
WRITE:

binary, statement 6-19
direct access, statements 6-19
formatted, statemenl 6-19
statements 6-18

X, Y, Z
X input format 6-23
X outpul formal 6-22
XREFL (compiler option) 2-7
XREFS (compiler option) 2-7
Z (in B formal] 6-24

/ March 1980 X-7 FDR30S7

	Front Cover
	Flyleaf
	i
	ii
	Title Page
	iii
	Copyright
	iv
	Contents
	v
	vi
	Section I
	Overview
	Chapter 1
	Overiew of Prime's FORTRAN
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	Section II
	Language-Specific System Information
	Chapter 2
	Compiling
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	Chapter 3
	Debugging
	3-1
	3-2
	3-3
	Chapter 4
	Optimization and other helpful hints
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	Section III
	Language Reference
	Chapter 5
	FORTRAN language elements
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	Chapter 6
	FORTRAN statements
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	Chapter 7
	FORTRAN function and subroutine structure
	7-1
	7-2
	7-3
	7-4
	Chapter 8
	FORTRAN function reference
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	Section IV
	Appendices
	Appendix A
	Error messages
	A-1
	A-2
	A-3
	A-4
	A-5
	Appendix B
	System defaults and constants
	B-1
	B-2
	Appendix C
	ASCII character set
	C-1
	C-2
	C-3
	Appendix D
	Prime memory formats of FORTRAN data types
	D-1
	D-2
	D-3
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7

